N4SID method applied to obtain a discrete-time linear state space system as a mathematical model of a jaw crusher prototype

Author(s):  
Ademar G. Costa ◽  
Jose Leonardo B. Maldonado ◽  
Fabricio A. Romero ◽  
Jhon C. Sanmartin ◽  
Michael Valarezo ◽  
...  
2003 ◽  
Vol 05 (04) ◽  
pp. 361-374
Author(s):  
HUA XU ◽  
HIROAKI MUKAIDANI

The linear quadratic zero-sum dynamic game for discrete time descriptor systems is considered. A method, which involves solving a linear quadratic zero-sum dynamic game for a reduced-order discrete time state space system, is developed to find the linear feedback saddle-point solutions of the problem. Checkable conditions, which are described in terms of two dual algebraic Riccati equations and a Hamiltonian matrix, are given such that the linear quadratic zero-sum dynamic game for the reduced-order discrete time state space system is available. Sufficient conditions for the existence of the solutions are obtained. In contrast with the dynamic game in state space systems, the dynamic game in descriptor systems admits uncountably many linear feedback saddle-point solutions. All these solutions have the same existence conditions and achieve the same value of the dynamic game.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Janusz Piotr Paplinski

The main problem with the soft-computing algorithms is a determination of their parameters. The tuning rules are very general and need experiments during a trial and error method. The equations describing the bat algorithm have the form of difference equations, and the algorithm can be treated as a stochastic discrete-time system. The behaviour of this system depends on its dynamic and preservation stability conditions. The paper presents the stability analysis of the bat algorithm described as a stochastic discrete-time state-space system. The observability and controllability analyses were made in order to verify the correctness of the model describing the dynamic of BA. Sufficient conditions for stability are derived based on the Lyapunov stability theory. They indicate the recommended areas of the location of the parameters. The analysis of the position of eigenvalues of the state matrix shows how the different values of parameters affect the behaviour of the algorithm. They indicate the recommended area of the location of the parameters. Simulation results confirm the theory-based analysis.


1990 ◽  
Vol 112 (4) ◽  
pp. 774-781 ◽  
Author(s):  
R. J. Chang

A practical technique to derive a discrete-time linear state estimator for estimating the states of a nonlinearizable stochastic system involving both state-dependent and external noises through a linear noisy measurement system is presented. The present technique for synthesizing a discrete-time linear state estimator is first to construct an equivalent reference linear model for the nonlinearizable system such that the equivalent model will provide the same stationary covariance response as that of the nonlinear system. From the linear continuous model, a discrete-time state estimator can be directly derived from the corresponding discrete-time model. The synthesizing technique and filtering performance are illustrated and simulated by selecting linear, linearizable, and nonlinearizable systems with state-dependent noise.


Sign in / Sign up

Export Citation Format

Share Document