Influence of Snow Cover on the Seismic Waves Propagation

Author(s):  
Gyulnara Voskoboynikova ◽  
Kholmatzhon Imomnazarov ◽  
Aleksander Mikhailov ◽  
Jian-Gang Tang
2015 ◽  
Author(s):  
V.A. Tcheverda ◽  
V.G. Khaidukov ◽  
V.V. Lisitsa ◽  
G.V. Reshetova

Author(s):  
Н.И. Хохлов

Основной задачей, стоящей перед сейсмической разведкой, является восстановление структуры и свойств подповерхностного пространства на основе регистрации колебаний земной поверхности. Для этого необходимо решить обратную задачу, что, в свою очередь, требует решения серии прямых задач с последовательно изменяющейся моделью геологического массива. В связи с открытием нетрадиционных месторождений (например, Баженовская свита), актуальной становится задача интерпретации сейсмического сигнала, обусловленной неоднородной структурой трещиноватых пластов. В настоящей работе была построена трещиноватая модель, отражающая некоторые особенности нефтеносных геологических сред. Проведено численное моделирование распространения сейсмических волн и получены синтетические площадные сейсмограммы. Также был проведен анализ сейсмического отклика. The key objective of seismic exploration is the recreation of the subsoil structure and properties by registering the surface waves. To solve a reverse problem, several direct problems shall be solved as the rock model is gradually changed. As nonconventional deposits are discovered (like the Bazhenov suite), it becomes necessary to interpret the seismic response caused by the heterogeneous structure of the fractured rock. This study presents a fractured rock model that represents some features of oilbearing geology. The seismic waves propagation was simulated, and composed widepatch seismic records were produced. The seismic response was also analyzed.


1983 ◽  
pp. 391-396
Author(s):  
A. A. Gvozdev ◽  
M. A. Grinfeld ◽  
N. V. Zvolinski

1994 ◽  
Vol 19 ◽  
pp. 49-54 ◽  
Author(s):  
Jerome B. Johnson ◽  
Daniel J. Solie ◽  
Stephen A. Barrett

An explosive detonation in snow produces high intensity shock waves that are rapidly attenuated by momentum spreading as the snow is compacted. Our experimental measurements and numerical calculations indicate that the maximum shock-wave attenuation in seasonal snow (250 kgm−3) is proportional to between x−1.6 and x−3 for plane waves and x−3 for spherical waves (x is the propagation distance). Outside the region of shock-compacted snow or in air over snow, stresses are transmitted as acoustic/seismic waves. Attenuation of these waves depends on snow permeability and the effective modulus of the ice frame and is proportional to about x−0.7 for plane waves in seasonal snow and to about x−1 for spherical waves in air over seasonal snow. Increasing the scaled detonation height of an explosive up to 2mkgf−1/3 above a snow cover increases the far field (scaled distances greater than about 8m kgf−1/3 snow surface pressures. Scaled detonation heights greater than about 2mkgf−1/3 have little additional effect.


Sign in / Sign up

Export Citation Format

Share Document