rock heterogeneity
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 31)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Huaiguang Xiao ◽  
Lei He ◽  
Run Shi ◽  
Jiacheng Song ◽  
Yudi Tang ◽  
...  

The size effect on mechanical behaviors of rock materials has been a challenging topic. The previous research is mainly to study the relationship between known large-scale models and representative element volumes. However, only limited scale models can be obtained in situ or laboratory in many cases, so tests or simulations of mechanical response behaviors of large-scale models cannot be carried out. In order to obtain large-scale models, this paper proposes a multi-scale enlarged digital modeling method to synthesize granite models based on texture self-similarity. The representational ability of synthetic granite is analyzed by using mathematical statistics and finite-difference numerical method. The results show that synthetic granite can characterize the natural rock well in terms of texture morphology, geometric characteristics, and mechanical behaviors. Then, the size effect on mechanical behaviors of intact granite is performed based on an enlarged digital model. The results show that the uniaxial compressive strength of intact granite increases with the increase of model size. In addition, the relationship between heterogeneity and homogeneity is established at different unit scales by using the synthetic digital granite model. The enlarged digital rock model has great potential in studying size effects with rock heterogeneity.


2021 ◽  
Author(s):  
Sameeh Batarseh ◽  
Damian San Roman Alerigi ◽  
Abdullah Al Harith ◽  
Wisam Assiri

Abstract This study evaluates physical and chemical changes induced by high thermal gradients on the formation and their impact to the stability. The heat sources that effect the formation’s stability are varied, including drilling (due to drilling bit friction), perforation, electromagnetic heating (laser or microwave), and thermal recovery or stimulation (steam, resistive heating, combustion, microwave, etc.). This study uses an integrated approach to characterize rock heterogeneity and mapping heat propagation from different heat sources. The information obtained from the study is vital to accurately design and enhance well completion and stimulation This is an integrated analysis approach combining different advanced characterization and visualization techniques to map heat propagation in the formation. Advanced statistical analysis is also used to determine the key parameters and build fundamental prediction algorithms. Characterization on the samples was performed before, during, and after the exposure to thermal sources; it comprised thin-section, high speed infrared thermography (IR), differential thermal analysis and thermogravimetric analyzer (DTA/TGA), scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), uniaxial stress, and autoscan (provide hardness, composition, velocity, and spectral absorption). The results are integrated, and machine learning is used to derive a predictive algorithm of heat propagation and mapping in the formation with reference to the key formation variables and heterogeneity distribution. Rock heterogeneity affects the rate and patterns of heat propagation into the formation. Within the rock sample, minerals, laminations, and cementations lead to a heterogeneous, and sometimes anisotropic, distribution of thermal properties (thermal conductivity, heat capacity, diffusivity, etc.). These properties are also affected by the rock structure (porosity, micro-cracks, and fractures) and saturation distribution. The results showed the impact of heat on the mechanical properties of the rocks are due to clays dehydration, mineral dissociations, and micro cracks. High speed thermal imaging provides a unique visualization of heat propagation in heterogeneous rocks. Statistical analysis identified key parameters and their impact on thermal propagation; the output was used to build a machine learning algorithm to predict heat distributions in core samples and near-wellbore. Characterizing rock properties and understanding how heterogeneity modifies heat propagation in rocks enables the design of optimal completion and stimulation strategies. This paper discusses how advanced characterization and analysis, combined with novel algorithms, can improve this understanding, and unleash innovation and optimization. The data and information gathered are critical to develop numerical models for field-scale applications.


2021 ◽  
Author(s):  
Arne Skauge ◽  
Kenneth Stuart Sorbie ◽  
Iselin Cecilie Salmo ◽  
Tormod Skauge

Abstract Modelling unstable displacement is a challenge which may lead to large errors in reservoir simulations. Field scale coarse grid simulations therefore need to be anchored to more reliable fine grid models which capture fluid displacement instabilities in a physically correct manner. In this paper, a recently developed approach for accurately modelling viscous fingering has been applied to various types of unstable displacement. The method involves estimation of dispersivity of the porous medium and length scale of the model to determine the required size of the simulation grid cell. Fractional flow theory is then applied to obtain the correct saturation of the injected phase in the unstable fingers formed due to the adverse mobility ratio. Unstable displacement experiments have been history matched using 2D-imaging of in-situ saturation as a calibration of our method, before carrying out sensitivity calculations on the effect of fluid viscosity, and rock heterogeneity. Our modelling approach allows us to carry out simulations using a conventional numerical simulator using elementary numerical methods (e.g. single-point upstreaming). The methods used to model instability (Sorbie et al, 2020) was originally developed for immiscible water/oil systems. The current paper now presents new results applying this approach to unstable gas displacements, where adverse viscosity ratios may be even higher than in water/oil systems. The displacement with injected gas is shown to be influenced by mass exchanges between the gas and oil as the alternating fluids (water and gas) are injected in WAG processes. Swelling of fingers delay the gas front and WAG processes divert the injected gas and improve sweep efficiency. We have also modelled water-oil displacement at adverse mobility and shown the benefit which is obtained by reducing the instability by adding polymers to viscosify the injected water. The impact of rock heterogeneity has different effect depending on buoyancy forces and the degree of crossflow into the high permeable zones. This paper extends our novel approach to modelling the fine scale distribution of the injected fluids in adverse mobility ratio displacements. This approach has now been applied to both, gas/oil and water/oil systems where viscous fingering is present, either at extremely adverse mobility ratios and/or for reservoirs where the permeability field is very heterogeneous.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xueliang Li ◽  
Guang Sun

In order to investigate the influence of pore pressure on hydraulic fracturing behavior in the local and whole model, the coupled flow-stress-damage (FSD) analysis system RFPA-Flow was used to study the influence of rock heterogeneity, natural stress ratio, double-hole spacing, and water pressure gradient on the stress shadow effect. The numerical results show that the tensile crack induced by pore water pressure is significantly affected by the pore water pressure and water pressure gradient. The larger the pore pressure gradient is, the more asymmetrical the crack development pattern and the smaller the instability pressure of the model. In addition, the shape of hydraulic fracture becomes much more irregular with the increase in rock heterogeneity. The number and shape of tip microcracks under the influence of local water pressure are closely related to the homogeneity of rock. Moreover, when the natural stress difference is large, the hydraulic fracture propagates parallel to the maximum principal stress; when the stress field is close and the spacing between two holes is less than 5 times the diameter, the propagation direction of hydraulic fractures between holes is perpendicular to the maximum principal stress. It is found that no hydraulic fractures occur between the two holes when the distance between holes is greater than 5 times the diameter.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7429
Author(s):  
Jing Zhou ◽  
Zilong Zhou ◽  
Yuan Zhao ◽  
Xin Cai

Measuring accurate wave velocity change is a crucial step in damage assessment of building materials such as rock and concrete. The anisotropy caused by the generation of cracks in the damage process and the uncertainty of the damage level of these building materials make it difficult to obtain accurate wave velocity change. We propose a new method to measure the wave velocity change of anisotropic media at any damage level by full-waveform correlation. In this method, the anisotropy caused by the generation of cracks in the damage process is considered. The accuracy of the improved method is verified by numerical simulation and compared with the existing methods. Finally, the proposed method is applied to measure the wave velocity change in the damage process of rock under uniaxial compression. We monitor the failure process of rock by acoustic emission (AE) monitoring system. Compared with the AE ringing count, the result of damage evaluation obtained by the proposed method is more accurate than the other two methods in the stage of increasing rock heterogeneity. These results show that the proposed method is feasible in damage assessment of building materials such as rock and concrete.


2021 ◽  
Author(s):  
Timo Saksala

AbstractInherent microcrack populations have a significant effect on the fracture behaviour of natural rocks. The present study addresses this topic in numerical simulations of uniaxial tension and three-point bending tests. For this end, a rock fracture model based on multiple intersecting embedded discontinuity finite elements is developed. The inherent (pre-existing) microcrack populations are represented by pre-embedded randomly oriented discontinuity populations. Crack shielding (through spurious locking) is prevented by allowing a new crack to be introduced, upon violation of the Rankine criterion, in an element with an initial crack unfavourably oriented to the loading direction. Rock heterogeneity is accounted for by random clusters of triangular finite elements representing different minerals of granitic numerical rock. Numerical simulations demonstrate the strength lowering effect of initial microcrack populations. This effect is substantially stronger under uniaxial tension, due to the uniform stress state, than in semicircular three-point bending having a non-uniform stress state with a clear local maximum of tensile stress.


2021 ◽  
Author(s):  
Yue Shi ◽  
Kishore Mohanty ◽  
Manmath Panda

Abstract Oil-wetness and heterogeneity (i.e., existence of low and high permeability regions) are two main factors that result in low oil recovery by waterflood in carbonate reservoirs. The injected water is likely to flow through high permeability regions and bypass the oil in low permeability matrix. In this study, systematic coreflood tests were carried out in both "homogeneous" cores and "heterogeneous" cores. The heterogeneous coreflood test was proposed to model the heterogeneity of carbonate reservoirs, bypassing in low-permeability matrix during waterfloods, and dynamic imbibition of surfactant into the low-permeability matrix. The results of homogeneous coreflood tests showed that both secondary-waterflood and secondary-surfactant flood can achieve high oil recovery (>50%) from relatively homogenous cores. A shut-in phase after the surfactant injection resulted in an additional oil recovery, which suggests enough time should be allowed while using surfactants for wettability alteration. The core with a higher extent of heterogeneity produced lower oil recovery to waterflood in the coreflood tests. Final oil recovery from the matrix depends on matrix permeability as well as the rock heterogeneity. The results of heterogeneous coreflood tests showed that a slow surfactant injection (dynamic imbibition) can significantly improve the oil recovery if the oil-wet reservoir is not well-swept.


2021 ◽  
Author(s):  
Tiurma Theresa Sibarani ◽  
Murtaza Ziauddin

Abstract Rock heterogeneities, such as variations in pore distribution, pore throat diameter, and initial permeability, significantly affect the outcome of carbonate matrix stimulation treatments. A better understanding of the influence of these parameters on stimulation and diversion, especially for the performance of self-diverting acids, is needed for efficient stimulation designs. Carbonate rock samples from six outcrop formations, with permeability ranging from 2 to 150 md, were used in the study. Large blocks were acquired for each outcrop, and several 1.5×6-in. core plugs were drilled from these blocks. Pore structure in each outcrop was characterized by high-pressure mercury injection (HPMI) porosimetry and flowing fraction measured with nondestructive tracer tests. Pore volume to breakthrough (PVbt) for a viscoelastic self-diverting (VES) acid was determined at 150°F for injection rates ranging from 1 to 10 cm3/min. The diversion ability for the VES acid was evaluated by (1) the increase in pressure during VES acid injection and (2) the pore volumes this higher pressure was maintained. The results show that flowing fractions measured by injection of either KCl (potassium chloride) tracer in deionized water or a dilute polymer solution is an effective means for characterizing the pore structure and for predicting the pore volume to breakthrough and diversion performance of VES acids. High-permeability grainstones such as Indiana Limestone, where most of the rock porosity is accessible to aqueous fluids (high flowing fraction), have the largest pore volume to breakthrough and the largest relative pressure buildup during injection of VES acids. Low-permeability rocks with heterogeneous porosity (low flowing fraction) have lower pore volume to breakthrough and had a relatively low-pressure build-up. The results are summarized in a master-curve, which facilitates prediction of pore volume to breakthrough of VES acids from rock properties that can be measured by non-destructive techniques. Correlations for PVbt and the diversion ability of the VES acid are presented, so that the performance of these acid systems can be estimated for formation rocks where direct measuremets of PVbt or diversion are not be practical.


Sign in / Sign up

Export Citation Format

Share Document