Digital Watermark Design for Two-Dimensional Codes Displayed on Smart Phone Screen Using Multi-objective Optimization and Optical Simulation

Author(s):  
Shingo Takeshita ◽  
Takeru Maehara ◽  
Satoshi Ono
2016 ◽  
Vol 30 (09) ◽  
pp. 1650046 ◽  
Author(s):  
S. Zhang ◽  
J. Yin ◽  
H. W. Zhang ◽  
B. S. Chen

Phoxonic crystal (PXC) is a promising artificial periodic material for optomechanical systems and acousto-optical devices. The multi-objective topology optimization of dual phononic and photonic max relative bandgaps in a kind of two-dimensional (2D) PXC is investigated to find the regular pattern of topological configurations. In order to improve the efficiency, a multi-level substructure scheme is proposed to analyze phononic and photonic band structures, which is stable, efficient and less memory-consuming. The efficient and reliable numerical algorithm provides a powerful tool to optimize and design crystal devices. The results show that with the reduction of the relative phononic bandgap (PTBG), the central dielectric scatterer becomes smaller and the dielectric veins of cross-connections between different dielectric scatterers turn into the horizontal and vertical shape gradually. These characteristics can be of great value to the design and synthesis of new materials with different topological configurations for applications of the PXC.


Author(s):  
Jinouwen Zhang ◽  
Haowan Zhuang ◽  
Jinfang Teng ◽  
Mingmin Zhu ◽  
Xiaoqing Qiang

In the modern aerodynamic design of turbomachinery blades, the geometries of blades often need to be reshaped to achieve better aerodynamic performance by introducing extra parametric design variables. A higher variable dimension will lead to a larger sampling range as well as a sparser sample distribution, which challenges the effectiveness and stability of optimization schemes based on surrogate model by making the model prediction quality even poorer. In this paper, a multi-objective optimization based on Gaussian process model was carried out for a high dimensional design space. Based on the previous two-dimensional optimization, tandem stators of a modern compressor were optimized by the design of sweep and dihedral. The purpose of the study is to improve the aerodynamic performance of the compressor tandem stators as well as to provide an effective optimization scheme for high dimensional multi-objective optimization problems. The design of sweep and dihedral for reshaping the tandem stators consists of a total of 18 design variables. An improvement in total pressure recovery coefficient of at least 0.7% at positive incidence and at least 0.3% at negative incidence was obtained, much larger than that in the previous two-dimensional optimization. The optimization process shows that, by using Gaussian process as the surrogate model and a special sampling strategy, this optimization scheme is effective and efficient to handle this high dimensional space. The aerodynamic influences of design parameters of tandem blades were analyzed in detail and the superiority of sweep and dihedral in reducing aerodynamic loss was confirmed.


Sign in / Sign up

Export Citation Format

Share Document