Neural Network Reconfigurations: Changes of the Respiratory Network by Hypoxia as an Example

Author(s):  
Fernando Peña-Ortega
2003 ◽  
Vol 89 (6) ◽  
pp. 2975-2983 ◽  
Author(s):  
Andrew K. Tryba ◽  
Jan-Marino Ramirez

Most mammals modulate respiratory frequency (RF) to dissipate heat (i.e., panting) and avoid heat stroke during hyperthermic conditions. During hyperthermia, the RF of intact mammals increases and then declines or ceases (apnea). It has been proposed that this RF modulation depends on the presence of higher brain structures such as the hypothalamus. However, the direct effects of hyperthermia on the respiratory neural network have not been examined. To address this issue, the respiratory neural network [i.e., ventral respiratory group (VRG)] was isolated in a brain stem preparation taken from the medulla of mice (P0 –P6). Integrated population activity, predominated by inspiratory neurons, was recorded extracellularly from VRG neurons. The bath temperature was then heated from 30 to 40°C, resulting in a biphasic frequency response in VRG activity. Following an initial six- to sevenfold increase and subsequent decline, fictive RF was maintained at a frequency that was higher than baseline frequency; at 40°C, the RF was maintained at about two to four times that at 30°C. The inspiratory burst amplitude and duration were significantly reduced during hyperthermic conditions. An increase in RF and decrease in VRG burst amplitude and duration also occurred when heating from 37 to 40°C. Fictive apnea typically occurred during cooling to the control temperature. Furthermore, changes in hypoglossal motor nucleus activity paralleled those of the VRG, suggesting that temperature modulation of the VRG is likely to have a behaviorally relevant impact on respiration. We conclude that the VRG activity itself is modulated during hyperthermia and the respiratory network is particularly sensitive to temperature changes.


2001 ◽  
Vol 86 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Muriel Thoby-Brisson ◽  
Jan-Marino Ramirez

In the respiratory network of mice, we characterized with the whole cell patch-clamp technique pacemaker properties in neurons discharging in phase with inspiration. The respiratory network was isolated in a transverse brain stem slice containing the pre-Bötzinger complex (PBC), the presumed site for respiratory rhythm generation. After blockade of respiratory network activity with 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX), 18 of 52 inspiratory neurons exhibited endogenous pacemaker activity, which was voltage dependent, could be reset by brief current injections and could be entrained by repetitive stimuli. In the pacemaker group ( n = 18), eight neurons generated brief bursts (0.43 ± 0.03 s) at a relatively high frequency (1.05 ± 0.12 Hz) in CNQX. These bursts resembled the bursts that these neurons generated in the intact network during the interval between two inspiratory bursts. Cadmium (200 μM) altered but did not eliminate this bursting activity, while 0.5 μM tetrodotoxin suppressed bursting activity. Another set of pacemaker neurons (10 of 18) generated in CNQX longer bursts (1.57 ± 0.07 s) at a lower frequency (0.35 ± 0.01 Hz). These bursts resembled the inspiratory bursts generated in the intact network in phase with the population activity. This bursting activity was blocked by 50–100 μM cadmium or 0.5 μM tetrodotoxin. We conclude that the respiratory neural network contains pacemaker neurons with two types of bursting properties. The two types of pacemaker activities might have different functions within the respiratory network.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document