A New Heat Transfer Simulation Model for Selective Laser Melting to Estimate the Geometry of Cross Section of Melt Pool

Author(s):  
Hong-Chuong Tran ◽  
Yu-Lung Lo
2019 ◽  
Vol 3 (3) ◽  
pp. 62 ◽  
Author(s):  
Fyrillas ◽  
Ioannou ◽  
Papadakis ◽  
Rebholz ◽  
Doumanidis

In this paper we introduce an analytical approach for predicting the melting radius during powder melting in selective laser melting (SLM) with minimum computation duration. The purpose of this work is to evaluate the suggested analytical expression in determining the melt pool geometry for SLM processes, by considering heat transfer and phase change effects with density variation and cylindrical symmetry. This allows for rendering first findings of the melt pool numerical prediction during SLM using a quasi-real-time calculation, which will contribute significantly in the process design and control, especially when applying novel powders. We consider the heat transfer problem associated with a heat source of power Q' (W/m) per unit length, activated along the span of a semi-infinite fusible material. As soon as the line heat source is activated, melting commences along the line of the heat source and propagates cylindrically outwards. The temperature field is also cylindrically symmetric. At small times (i.e., neglecting gravity and Marangoni effects), when the density of the solid material is less than that of the molten material (i.e., in the case of metallic powders), an annulus is created of which the outer interface separates the molten material from the solid. In this work we include the effect of convection on the melting process, which is shown to be relatively important. We also justify that the assumption of constant but different properties between the two material phases (liquid and solid) does not introduce significant errors in the calculations. A more important result; however, is that, if we assume constant energy input per unit length, there is an optimum power of the heat source that would result to a maximum amount of molten material when the heat source is deactivated. The model described above can be suitably applied in the case of selective laser melting (SLM) when one considers the heat energy transferred to the metallic powder bed during scanning. Using a characteristic time and length for the process, we can model the energy transfer by the laser as a heat source per unit length. The model was applied in a set of five experimental data, and it was demonstrated that it has the potential to quantitatively describe the SLM process.


2019 ◽  
Vol 57 (6) ◽  
pp. 916-943
Author(s):  
S. I. Zhavoronok ◽  
A. S. Kurbatov ◽  
L. N. Rabinskiy ◽  
Yu. O. Solyaev

Equipment ◽  
2006 ◽  
Author(s):  
S. Tsopanos ◽  
M. Wong ◽  
I. Owen ◽  
C. J. Sutcliffe

2021 ◽  
Vol 68 ◽  
pp. 347-355
Author(s):  
Qihang Fang ◽  
Zhenbiao Tan ◽  
Hui Li ◽  
Shengnan Shen ◽  
Sheng Liu ◽  
...  

2019 ◽  
Vol 25 ◽  
pp. 347-356 ◽  
Author(s):  
Sam Coeck ◽  
Manisha Bisht ◽  
Jan Plas ◽  
Frederik Verbist

2021 ◽  
Vol 45 (1) ◽  
pp. 1-10
Author(s):  
Arnold Mauduit ◽  
Hervé Gransac ◽  
Sébastien Pillot

Various selective laser melting (SLM) configurations (8 in all) were tested on aluminum alloy AlSi7Mg0.6 by making single tracks on parallelepipeds specimens. We used an energy balance as a means of connecting the machine parameters (power, speed, etc.) of the 8 configurations to the morphology (geometry) of the single tracks. On this basis, we correlated the width, depth and especially the section area of the melt pool (single track) to the linear energy density. We were also able to assess the absorption coefficient of the aluminum alloy AlSi7Mg0.6 as a function of the temperature. The study was then focused on the microstructure and the possible impacts on the material properties including on the mechanical characteristics and the anisotropy observed in literature based on the build direction. Evidence suggests that the Hall-Petch relation can be used to explain this anisotropy. The thermal analysis highlighted two laser operating modes: the keyhole mode and the conduction mode. These modes have also been described via the morphology of the single tracks. Finally, a comparison between Rosenthal’s theoretical model (in the case of the conduction mode) and actual conditions was proposed by the obtained geometry of the single tracks as well as the cooling speeds calculated and measured using the dendrite arm spacing (DAS). The maximum temperatures achieved were also assessed by Rosenthal’s theoretical model which made it possible to explain the evaporation of some chemical elements during the manufacturing of the aluminum alloy through SLM.


2007 ◽  
Vol 254 (4) ◽  
pp. 975-979 ◽  
Author(s):  
A.V. Gusarov ◽  
I. Yadroitsev ◽  
Ph. Bertrand ◽  
I. Smurov

2019 ◽  
Vol 264 ◽  
pp. 21-31 ◽  
Author(s):  
Olivier Andreau ◽  
Imade Koutiri ◽  
Patrice Peyre ◽  
Jean-Daniel Penot ◽  
Nicolas Saintier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document