The Container Truck Route Optimization Problem by the Hybrid PSO-ACO Algorithm

Author(s):  
Yi Liu ◽  
Mao Feng ◽  
Sabina Shahbazzade
Author(s):  
S. Raza Wasi ◽  
J. Darren Bender

An interesting, potentially useful, and fully replicable application of a spatially enabled decision model is presented for pipeline route optimization. This paper models the pipeline route optimization problem as a function of engineering and environmental design criteria. The engineering requirements mostly deal with capital, operational and maintenance costs, whereas environmental considerations ensure preservation of nature, natural resources and social integration. Typically, pipelines are routed in straight lines, to the extent possible, to minimize the capital construction costs. In contrast, longer pipelines and relatively higher costs may occur when environmental and social considerations are part of the design criteria. Similarly, much longer pipelines are less attractive in terms of capital costs and the environmental hazard associated with longer construction area. The pipeline route optimization problem is potentially a complex decision that is most often undertaken in an unstructured, qualitative fashion based on human experience and judgement. However, quantitative methods such as spatial analytical techniques, particularly the least-cost path algorithms, have greatly facilitated automation of the pipeline routing process. In the past several interesting studies have been conducted using quantitative spatial analytical tools for finding the best pipeline route or using non-spatial decision making tools to evaluate several alternates derived through conventional route reconnaissance methods. Most of these studies (that the authors are familiar with) have concentrated on integrating multiple sources of spatial data and performing quantitative least-cost path analysis or have attempted to make use of non-spatial decision making tools to select the best route. In this paper, the authors present a new framework that incorporates quantitative spatial analytical tools with an Analytical Hierarchical Process (AHP) model to provide a loosely integrated but efficient spatial Decision Support System (DSS). Specifically, the goal is to introduce a fully replicable spatial DSS that processes both quantitative and qualitative information, balances between lowest-cost and lowest-impact routes. The model presented in this paper is implemented in a four step process: first, integration of multiple source data that provide basis for engineering and environmental design criteria; second, creation of several alternate routes; third, building a comprehensive decision matrix using spatial analysis techniques; and fourth, testing the alternative and opinions of the stakeholder groups on imperatives of AHP model to simplify the route optimization decision. The final output of the model is then used to carry out sensitivity analysis, quantify the risk, generate “several what and if scenarios” and test stability of the route optimization decision.


2015 ◽  
Vol 11 (9) ◽  
pp. 4 ◽  
Author(s):  
Wei Liu ◽  
Yongfeng Cui ◽  
Zhongyuan Zhao

The objective of this paper is focuses on route optimization, for a given wireless sensor network. We detail the significance of route optimization problem and the corresponding mathematical model. After analyzing the complex multi-objective optimization problem, Ant Colony Optimization (ACO) algorithm was introduced to search the best route. Inspired by Genetic Algorithm (GA), we embed two operations into ACO to refine it. First, every ant after achieving sink will be regarded as an individual such as that in GA. The crossover operation will be applied and then, the generated new ants will replace the weaker parents. Second, we designed a mutation operation for ants selecting next nodes to visit. Experimental results demonstrate that the proposed combination algorithm has significant enhancements than both GA and ACO. The lifetime of WSN can be extended and the coverage speed can be accelerated.


2015 ◽  
Vol 12 (7) ◽  
pp. 1373-1377
Author(s):  
Tao Luo ◽  
Xiaoli Qiang ◽  
Yajun She ◽  
Zongyuan Yang

2015 ◽  
Vol 713-715 ◽  
pp. 1761-1764
Author(s):  
Feng Kai Xu

In order to achieve a low cost and low exhaust pollution in logistics distribution path. In view of the shortages of existing genetic algorithm and ant colony algorithm which have the characteristics of some limitations, such as ant colony algorithm's convergence slow, easy going, the characteristics of such as genetic algorithm premature convergence in the process of path optimization, process complex, the paper proposed the improved artificial fish swarm algorithm in order to solve logistics route optimization problem. At last, through simulation experiment, the improved artificial fish swarm algorithm is proved correct and effective.


2013 ◽  
Vol 711 ◽  
pp. 816-821
Author(s):  
Zhi Ping Hou ◽  
Feng Jin ◽  
Qin Jian Yuan ◽  
Yong Yi Li

Vehicle Routing Problem (VRP) is a typical combinatorial optimization problem. A new type of bionic algorithm-ant colony algorithm is very appropriate to solve Vehicle Routing Problem because of its positive feedback, robustness, parallel computing and collaboration features. In view of the taxi route optimization problem, this article raised the issue of the control of the taxi, by using the Geographic Information System (GIS), through the establishment of the SMS platform and reasonable taxi dispatch control center, combining ant colony algorithm to find the most nearest no-load taxi from the passenger, and giving the no-load taxi the best path to the passenger. Finally this paper use Ant Colony laboratory to give the simulation. By using this way of control, taxis can avoid the no-load problem effectively, so that the human and material resources can also achieve savings.


2011 ◽  
Vol 299-300 ◽  
pp. 1217-1220
Author(s):  
Jian Ye Wan ◽  
Xin Jiang ◽  
Yun Peng Wang

According to handling route of assembly line of airbag optimization problem, handling path planning mathematical model is established. Based on natural coding genetic algorithm, combining with JH company assembly line of airbag layout and the actual situation of material handling, using MATLAB software to realize the genetic algorithm, production logistics fields materials handling route problem in the optimization method is put forward. To solve production enterprise assembly line material handling route optimization problem, and has certain directive role.


Author(s):  
Hideki Katagiri ◽  
Qingqiang Guo ◽  
Hongwei Wu ◽  
Hiroshi Hamori ◽  
Kosuke Kato

2007 ◽  
Author(s):  
C. Ng ◽  
P. Thubert ◽  
M. Watari ◽  
F. Zhao

2012 ◽  
Vol 6-7 ◽  
pp. 445-451
Author(s):  
Chang Sheng Zhang ◽  
Ming Kang Ren ◽  
Bin Zhang

In this paper, an efficient multi-objective artificial bee colony optimization algorithm based on Pareto dominance called PC_MOABC is proposed to tackle the QoS based route optimization problem. The concepts of Pareto strength and crowding distance are introduced into this algorithm, and are combined together effectively to improve the algorithm’s efficiency and generate a set of evenly distributed solutions. The proposed algorithm was evaluated on a set of different scale test problems and compared with the recently proposed popular NSGA-II based multi-objective optimization algorithm. The experimental results reveal very encouraging results in terms of the solution quality and the processing time required.


Sign in / Sign up

Export Citation Format

Share Document