Adapting Agriculture to Climate Change: Suitability of Banana Crop Production to Future Climate Change Over Uganda

Author(s):  
Geoffrey Sabiiti ◽  
Joseph Mwalichi Ininda ◽  
Laban Ayieko Ogallo ◽  
Jully Ouma ◽  
Guleid Artan ◽  
...  
2019 ◽  
Author(s):  
Tokuta Yokohata ◽  
Tsuguki Kinoshita ◽  
Gen Sakurai ◽  
Yadu Pokhrel ◽  
Akihiko Ito ◽  
...  

Abstract. Future changes in the climate system could have significant impacts on the natural environment and human activities, which in turn affect changes in the climate system. In the interaction between natural and human systems under climate change conditions, land use is one of the elements that play an essential role. Future climate change will affect the availability of water and food, which may impact land-use change. On the other hand, human land-use change can affect the climate system through bio-geophysical and bio-geochemical effects. To investigate these interrelationships, we developed MIROC-INTEG1 (MIROC INTEGrated terrestrial model version 1), an integrated model that combines the global climate model MIROC (Model for Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land use models. In this paper, we introduce the details and interconnections of the sub-models of MIROC-INTEG1, compare historical simulations with observations, and identify the various interactions between sub-models. MIROC-INTEG1 makes it possible to quantitatively evaluate the feedback processes or nexus between climate, water resources, crop production, land use, and ecosystem, and to assess the risks, trade-offs and co-benefits associated with future climate change and prospective mitigation and adaptation policies.


2019 ◽  
Vol 579 ◽  
pp. 124197 ◽  
Author(s):  
Jing Fu ◽  
Jun Niu ◽  
Shaozhong Kang ◽  
Adebayo J. Adeloye ◽  
Taisheng Du

2021 ◽  
Author(s):  
Zhiwei Yue ◽  
Xiangxiang Ji ◽  
La Zhuo ◽  
Wei Wang ◽  
Zhibin Li ◽  
...  

Abstract. Adaptation to future climate change with limited water resources is a major global challenge to sustainable and sufficient crop production. However, the large-scale responses of crop water footprint and its associated benchmarks under various irrigation techniques to future climate change scenarios remain unclear. The present study quantified the responses of maize and wheat water footprint per unit yield (WFP, m3 t−1) and corresponding WFP benchmarks under two representative concentration pathways (RCPs) in the 2030s, 2050s, and 2080s at a 5-arc minute grid level in the case for China. The differences among rain-fed and furrow-, micro-, and sprinkler-irrigated wheat and maize were identified. Compared with the baseline year (2013), maize WFP will increase under both RCP2.6 and RCP8.5, by 17 % and 13 %, respectively, until the 2080s. Wheat WFP will increase under RCP2.6 (by 12 % until the 2080s), while decrease by 12 % under RCP8.5 until the 2080s. WFP will increase the most for rain-fed crops. Relative to rain-fed crops, micro irrigation and sprinkler irrigation result in the smallest increases in WFP for maize and wheat, respectively. These water-saving managements will more effectively mitigate the negative impact of climate change. Furthermore, the spatial distributions of WFP benchmarks will not change as dramatically as those of WFP. The present study demonstrated that the visible different responses to climate change in terms of crop water consumption, water use efficiency, and WFP benchmarks under different irrigation techniques must be addressed and monitored. It also lays the foundation for future investigations into the influences of irrigation methods, RCPs, and crop types on WFP and its benchmarks in response to climate change in all agricultural regions worldwide.


2006 ◽  
Vol 106 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Michael B. Jones ◽  
Alison Donnelly ◽  
Fabrizio Albanito

2002 ◽  
Vol 19 ◽  
pp. 179-192 ◽  
Author(s):  
M Lal ◽  
H Harasawa ◽  
K Takahashi

Author(s):  
Sylvia Edgerton ◽  
Michael MacCracken ◽  
Meng-Dawn Cheng ◽  
Edwin Corporan ◽  
Matthew DeWitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document