Modified Coordinates in Dynamics Simulation of Multibody Systems with Elastic Bodies

Author(s):  
Evtim V. Zahariev
Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1359
Author(s):  
Marin Marin ◽  
Dumitru Băleanu ◽  
Sorin Vlase

The formalism of multibody systems offers a means of computer-assisted algorithmic analysis and a means of simulating and optimizing an arbitrary movement of a possible high number of elastic bodies in the connection [...]


Author(s):  
Kai Sorge ◽  
Friedrich Pfeiffer

Abstract A preprocessor providing the inertia data of elastic bodies for multibody algorithms is considered. The desired capability of including stress stiffening terms leads to a high computational effort. The method presented allows a straight forward implementation of the basic formulas by starting with the development of a special purpose symbolic calculator. A rotating elastic ring serves as an example.


Author(s):  
Paweł Malczyk ◽  
Janusz Fra¸czek

Efficient dynamics simulations of complex multibody systems are essential in many areas of computer aided engineering and design. As parallel computing resources has become more available, researchers began to reformulate existing algorithms or to create new parallel formulations. Recent works on dynamics simulation of multibody systems include sequential recursive algorithms as well as low order, exact or iterative parallel algorithms. The first part of the paper presents an optimal order parallel algorithm for dynamics simulation of open loop chain multibody systems. The proposed method adopts a Featherstone’s divide and conquer scheme by using Lagrange multipliers approach for constraint imposition and dependent set of coordinates for the system state description. In the second part of the paper we investigate parallel efficiency measures of the proposed formulation. The performance comparisons are made on the basis of theoretical floating-point operations count. The main part of the paper is concetrated on experimental investigation performed on parallel computer using OpenMP threads. Numerical experiments confirm good overall efficiency of the formulation in case of modest parallel computing resources available and demonstrate certain computational advantages over sequential versions.


Author(s):  
Jianxun Liang ◽  
Ou Ma ◽  
Caishan Liu

Finite element methods are widely used for simulations of contact dynamics of flexible multibody systems. Such a simulation is computationally very inefficient because the system’s dimension is usually very large and the simulation time step has to be very small in order to ensure numerical stability. A potential solution to the problem is to apply a model reduction method in the simulation. Although many model reduction techniques have been developed, most of them cannot be readily applied due to the high nonlinearity of the involved contact dynamics model. This paper presents a solution to the problem. The approach is based on a modified Lyapunov balanced truncation method. A numerical example is presented to demonstrate that, by applying the proposed model reduction method, the simulation process can be significantly speeded up while the resulting error caused by the model reduction is still within an acceptable level.


PAMM ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 39-40
Author(s):  
Sebastian Schulze ◽  
Walter Sextro ◽  
Frank Grüter

Author(s):  
Frank Melzer

Abstract The need for computer aided engineering in the analysis of machines and mechanisms led to a wide variety of general purpose programs for the dynamical analysis of multibody systems. In the past few years the incorporation of flexible bodies in this methodology has evolved to one of the major research topics in the field of multibody dynamics, due to the use of more lightweight structures and an increasing demand for high-precision mechanisms such as robots. This paper presents a formalism for flexible multibody systems based on a minimum set of generalized coordinates and symbolic computation. A standardized object-oriented data model is used for the system matrices, describing the elastodynamic behaviour of the flexible body. Consequently, the equations of motion are derived in a form independent of the chosen modelling technique for the elastic bodies.


Author(s):  
Yitao Zhu ◽  
Daniel Dopico ◽  
Corina Sandu ◽  
Adrian Sandu

Vehicle dynamics simulation based on multibody dynamics techniques has become a powerful tool for vehicle systems analysis and design. As this approach evolves, more and more details are required to increase the accuracy of the simulations, to improve their efficiency, or to provide more information that will allow various types of analyses. One very important direction is the optimization of multibody systems. Sensitivity analysis of the dynamics of multibody systems is essential for design optimization. Dynamic sensitivities, when needed, are often calculated by means of finite differences but, depending of the number of parameters involved, this procedure can be very demanding in terms of time and the accuracy obtained can be very poor in many cases if real perturbations are used. In this paper, several ways to perform the sensitivity analysis of multibody systems are explored including the direct sensitivity approaches and the adjoint sensitivity ones. Finally, the techniques proposed are applied to the dynamical optimization of a five bar mechanism and a vehicle suspension system.


Author(s):  
Mojtaba Oghbaei ◽  
Kurt S. Anderson ◽  
John A. Evans

This paper outlines the parallel implementation of a newly developed multibody system dynamics formulation. The methodology provides the means for the dynamic simulation to be parallelized temporally as well as spatially which will allow better exploitation of anticipated massively parallel computing resources. This will have three advantages: First, the system of equations may now be coarse grain parallelized to a far greater degree allowing an increased number of processors to be effectively utilized. Secondly, this will significantly reduce the fraction of serial operations and thus should increase speedup (reduced turn-around). Finally, the method allows temporal scale of each variable to be adjusted independently and as such offer considerable advantage for the efficient and accurate modeling and simulation of multiscale behaviors. These gains can be accomplished by discretizing a special form of the equations of motion in both temporal and spatial domains. Examples are provided to clarify the application of this scheme with particular attention on time domain parallelization.


Author(s):  
Kishor D. Bhalerao ◽  
Mohammad Poursina ◽  
Kurt S. Anderson

This paper presents a recursive direct differentiation method for sensitivity analysis of flexible multibody systems. Large rotations and translations in the system are modeled as rigid body degrees of freedom while the deformation field within each body is approximated by superposition of modal shape functions. The equations of motion for the flexible members are differentiated at body level and the sensitivity information is generated via a recursive divide and conquer scheme. The number of differentiations required in this method is minimal. The method works concurrently with the forward dynamics simulation of the system and requires minimum data storage. The use of divide and conquer framework makes the method linear and logarithmic in complexity for serial and parallel implementation, respectively, and ideally suited for general topologies. The method is applied to a flexible two arm robotic manipulator to calculate sensitivity information and the results are compared with the finite difference approach.


Sign in / Sign up

Export Citation Format

Share Document