Towards a Model-Driven Security Assurance of Open Source Components

Author(s):  
Irum Rauf ◽  
Elena Troubitsyna
2020 ◽  
pp. 53-108
Author(s):  
Christian Schlegel ◽  
Alex Lotz ◽  
Matthias Lutz ◽  
Dennis Stampfer

AbstractSuccessful engineering principles for building software systems rely on the separation of concerns for mastering complexity. However, just working on different concerns of a system in a collaborative way is not good enough for economically feasible tailored solutions. A successful approach for this is the composition of complex systems out of commodity building blocks. These come as is and can be represented as blocks with ports via data sheets. Data sheets are models and allow a proper selection and configuration as well as the prediction of the behavior of a building block in a specific context. This chapter explains how model-driven approaches can be used to support separation of roles and composition for robotics software systems. The models, open-source tools, open-source robotics software components and fully deployable robotics software systems shape a robotics software ecosystem.


Author(s):  
Georgousopoulos Christos ◽  
Xenia Ziouvelou ◽  
Gregory Yovanof ◽  
Antonis Ramfos

Since the early 1980s, Open Source Software (OSS) has gained a strong interest and an increased acceptance in the software industry that has to date initiated a “paradigm shift” (O’Reilly, 2004). The Open Source paradigm has introduced wholly new means of software development and distribution, creating a significant impact on the evolution of numerous business processes. In this chapter we examine the impact of the open source paradigm in the e-Procurement evolution and identify a trend towards Open Source e-Procurement Application Frameworks (AFs) which enable the development of tailored e-Procurement Solutions. Anchored in this notion, we present an Open-Source e-Procurement AF with a two-phase generation procedure. The innovative aspect of the proposed model relates to the combination of the Model Driven Engineering (MDE) approach with the Service-Oriented Architecture (SOA) paradigm for enabling the cost-effective production of e-Procurement Solutions by facilitating integration, interoperability, easy maintenance, and management of possible changes in the European e-Procurement environment. The assessment process of the proposed AF and its resulting e-Procurement Solutions occurs in the context of G2B in the Western-Balkan European region. Our evaluation yields positive results and further enhancing opportunities for the proposed Open Source e-Procurement AF and its resulting e-Procurement Solutions.


2015 ◽  
pp. 1966-1987
Author(s):  
Ricardo Perez-Castillo ◽  
Mario Piattini

Open source software systems have poor or inexistent documentation and contributors are often scattered or missing. The reuse-based composition and maintenance of open source software systems therefore implies that program comprehension becomes a critical activity if all the embedded behavior is to be preserved. Program comprehension has traditionally been addressed by reverse engineering techniques which retrieve system design models such as class diagrams. These abstract representations provide a key artifact during migration or evolution. However, this method may retrieve large complex class diagrams which do not ensure a suitable program comprehension. This chapter attempts to improve program comprehension by providing a model-driven reverse engineering technique with which to obtain business processes models that can be used in combination with system design models such as class diagrams. The advantage of this approach is that business processes provide a simple system viewpoint at a higher abstraction level and filter out particular technical details related to source code. The technique is fully developed and tool-supported within an R&D project about global software development in which collaborate two universities and five companies. The automation of the approach facilitates its validation and transference through an industrial case study involving two open source systems.


2020 ◽  
Vol 19 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Antonio Bucchiarone ◽  
Jordi Cabot ◽  
Richard F. Paige ◽  
Alfonso Pierantonio

AbstractIn 2017 and 2018, two events were held—in Marburg, Germany, and San Vigilio di Marebbe, Italy, respectively—focusing on an analysis of the state of research, state of practice, and state of the art in model-driven engineering (MDE). The events brought together experts from industry, academia, and the open-source community to assess what has changed in research in MDE over the last 10 years, what challenges remain, and what new challenges have arisen. This article reports on the results of those meetings, and presents a set of grand challenges that emerged from discussions and synthesis. These challenges could lead to research initiatives for the community going forward.


Author(s):  
Iason Somarakis ◽  
Michail Smyrlis ◽  
Konstantinos Fysarakis ◽  
George Spanoudakis

Author(s):  
Ricardo Perez-Castillo ◽  
Mario Piattini

Open source software systems have poor or inexistent documentation and contributors are often scattered or missing. The reuse-based composition and maintenance of open source software systems therefore implies that program comprehension becomes a critical activity if all the embedded behavior is to be preserved. Program comprehension has traditionally been addressed by reverse engineering techniques which retrieve system design models such as class diagrams. These abstract representations provide a key artifact during migration or evolution. However, this method may retrieve large complex class diagrams which do not ensure a suitable program comprehension. This chapter attempts to improve program comprehension by providing a model-driven reverse engineering technique with which to obtain business processes models that can be used in combination with system design models such as class diagrams. The advantage of this approach is that business processes provide a simple system viewpoint at a higher abstraction level and filter out particular technical details related to source code. The technique is fully developed and tool-supported within an R&D project about global software development in which collaborate two universities and five companies. The automation of the approach facilitates its validation and transference through an industrial case study involving two open source systems.


Author(s):  
Ricardo Perez-Castillo ◽  
Mario Piattini

Open source software systems have poor or inexistent documentation and contributors are often scattered or missing. The reuse-based composition and maintenance of open source software systems therefore implies that program comprehension becomes a critical activity if all the embedded behavior is to be preserved. Program comprehension has traditionally been addressed by reverse engineering techniques which retrieve system design models such as class diagrams. These abstract representations provide a key artifact during migration or evolution. However, this method may retrieve large complex class diagrams which do not ensure a suitable program comprehension. This chapter attempts to improve program comprehension by providing a model-driven reverse engineering technique with which to obtain business processes models that can be used in combination with system design models such as class diagrams. The advantage of this approach is that business processes provide a simple system viewpoint at a higher abstraction level and filter out particular technical details related to source code. The technique is fully developed and tool-supported within an R&D project about global software development in which collaborate two universities and five companies. The automation of the approach facilitates its validation and transference through an industrial case study involving two open source systems.


2021 ◽  
Vol 208 ◽  
pp. 102665
Author(s):  
Timothy C. Lethbridge ◽  
Andrew Forward ◽  
Omar Badreddin ◽  
Dusan Brestovansky ◽  
Miguel Garzon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document