Analysis of Rotor Ventilation System of Air Cooled Synchronous Machine Through Computational Fluid Dynamics

Author(s):  
Jiří Franc ◽  
Roman Pechanek
Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 315 ◽  
Author(s):  
Shikai Zhang ◽  
Anlan Ding ◽  
Xiuguo Zou ◽  
Bo Feng ◽  
Xinfa Qiu ◽  
...  

In this paper, a CFD (computational fluid dynamics) numerical calculation was employed to examine whether the ventilation system of the self-designed smart broiler house meets the requirements of cooling and ventilation for the welfare in poultry breeding. The broiler chamber is powered by two negative pressure fans. The fans are designed with different frequencies for the ventilation system according to the specific air temperature in the broiler chamber. The simulation of ventilation in the empty chamber involved five working conditions in this research. The simulation of ventilation in the broiler chamber and the simulation of the age of air were carried out under three working conditions. According to the measured dimensions of the broiler chamber, a three-dimensional model of the broiler chamber was constructed, and then the model was simplified and meshed in ICEM CFD (integrated computer engineering and manufacturing code for computational fluid dynamics). Two models, i.e., the empty chamber mesh model and the chamber mesh model with block model, were imported in the Fluent software for calculation. In the experiment, 15 measurement points were selected to obtain the simulated and measured values of wind velocity. For the acquired data on wind velocity, the root mean square error (RMSE) was 19.1% and the maximum absolute error was 0.27 m/s, which verified the accuracy of the CFD model in simulating the ventilation system of the broiler chamber. The boundary conditions were further applied to the broiler chamber model to simulate the wind velocity and the age of air. The simulation results show that, when the temperature was between 32 and 34 °C, the average wind velocity on the plane of the corresponding broiler chamber (Y = 0.2 m) was higher than 0.8 m/s, which meets the requirement of comfortable breeding. At the lowest frequency of the fan, the oldest age of air was less than 150 s, which meets the basic requirement for broiler chamber design. An optimization idea is proposed for the age of air analysis under three working conditions to improve the structure of this smart broiler chamber.


2017 ◽  
Vol 27 (7) ◽  
pp. 969-982 ◽  
Author(s):  
Fu-Jiang Chen ◽  
Qin-Yu Wu ◽  
Dan-Dan Huang ◽  
Yun Zhang ◽  
Wang Lu ◽  
...  

The fabric air dispersion system (FADS) is a ventilation terminal made of special polymer fabric. The porous structure of the fabric causes complex flow motion. Due to its advantages over the conventional ventilation system, i.e. ducts and diffusers, the FADS has been widely favoured by architects and researchers. In computational fluid dynamics (CFD) simulation the FADS is usually simplified into a free opening with an area equal to all pores and perforations, called the free area (FA) method in this present work. However, the effectiveness of this simplified method has not been validated. The present work took a half cylindrical FADS without orifices as an example and employed the FA method to simulate the airflow properties inside a chamber under isothermal and non-isothermal conditions. The simulated distributions of air velocity and temperature were compared with those by the direct description (DD) method. Meanwhile, the uniformity of air velocity distribution close to the FADS was validated against test data and the flow visualization using the dry ice as a smoking material. Results demonstrate that the FA method is effective and easy to implement, and performs as well as the DD method in predicting the distribution of airflow generated by the FADS without orifices.


A realistic model of a naturally ventilated tunnel with side ducts is analyzed by Computational Fluid Dynamics. This study accounts for the different temperatures of heat sources and the different domains as the phenomenon of smoke marching in the longitudinal direction is captured. The study accounts the domain to be air domain, and then CO domain. The effect of varying the heat intensity with the marching of smoke is analyzed in the research. Critical parameters like air flow direction and velocity of smoke are taken into account. The paper mainly focuses on temperature distribution, modelling the problem as a convection problem.


2017 ◽  
Vol 6 (2) ◽  
pp. 58
Author(s):  
Selçuk Keçel

This study examines the relationship between temperature, CO dispersions, symptoms, and COHb% levels accumulated in the blood on available ventilation conditions in cases of fire at point in an underground mine model. Based on operating parameters (air velocity and direction) of the ventilation system in the underground mine model, fast growing phase fire analyses were conducted according to the heat release rate (HRR) value in the range of 0-61.34MW. In fire scenarios prepared according to the hydrocarbon fuel type (C2.3H4.2O1.3), boundary conditions were calculated depending on the combustion equation considering fuel lower heating value (Qc). CO dispersions inside the tunnel were examined by transferring the time-dependent boundary conditions to the computational fluid dynamics (CFD) program.  yCO, COHb%, and COHb%/∆t changes were calculated according to the HRR value.  Findings regarding the effects of CO emission (acute and chronic poisoning), were expressed according to the HRR value. Keywords Combustion Model Design, Heat Release Rate (HRR), Carbon Monoxide emission, Symptoms and Survival Time, Computational Fluid Dynamics (CFD);


Sign in / Sign up

Export Citation Format

Share Document