A Simple Mechanism for the Disaster Emergency Unit Scheduling Problem

Author(s):  
P. J. Araya-Córdova ◽  
Óscar C. Vásquez
2018 ◽  
Vol 200 ◽  
pp. 311-317 ◽  
Author(s):  
P.J. Araya-Córdova ◽  
Óscar C. Vásquez

2020 ◽  
Vol 39 (6) ◽  
pp. 8125-8137
Author(s):  
Jackson J Christy ◽  
D Rekha ◽  
V Vijayakumar ◽  
Glaucio H.S. Carvalho

Vehicular Adhoc Networks (VANET) are thought-about as a mainstay in Intelligent Transportation System (ITS). For an efficient vehicular Adhoc network, broadcasting i.e. sharing a safety related message across all vehicles and infrastructure throughout the network is pivotal. Hence an efficient TDMA based MAC protocol for VANETs would serve the purpose of broadcast scheduling. At the same time, high mobility, influential traffic density, and an altering network topology makes it strenuous to form an efficient broadcast schedule. In this paper an evolutionary approach has been chosen to solve the broadcast scheduling problem in VANETs. The paper focusses on identifying an optimal solution with minimal TDMA frames and increased transmissions. These two parameters are the converging factor for the evolutionary algorithms employed. The proposed approach uses an Adaptive Discrete Firefly Algorithm (ADFA) for solving the Broadcast Scheduling Problem (BSP). The results are compared with traditional evolutionary approaches such as Genetic Algorithm and Cuckoo search algorithm. A mathematical analysis to find the probability of achieving a time slot is done using Markov Chain analysis.


2020 ◽  
Vol 91 (10) ◽  
pp. 806-811
Author(s):  
Laëtitia Corgie ◽  
Nicolas Huiban ◽  
Jean-Michel Pontier ◽  
François-Xavier Brocq ◽  
Jean-François Boulard ◽  
...  

BACKGROUND: Scuba diving activities expose divers to serious accidents, which can require early hospitalization. Helicopters are used for early evacuation. On the French Mediterranean coast, rescue is made offshore mainly by a French Navy Dauphin or at a landing zone by an emergency unit EC 135 helicopter.METHODS: We retrospectively analyzed diving accidents evacuated by helicopter on the French Mediterranean coast from 1 September 2014 to 31 August 2016. We gathered data at the Center for Hyperbaric Medicine and Diving Expertise (SMHEP) of the Sainte-Anne Military Hospital (Toulon, France), the 35 F squadron at Hyres (France) Naval Air Station, and the SAMU 83 emergency unit (Toulon, France).RESULTS: A total of 23 diving accidents were evacuated offshore by Dauphin helicopter and 23 at a landing zone on the coast by EC 135 helicopter without hoist. Immersion pulmonary edema (IPE) accounted for one-third of the total diving accidents evacuated by helicopter with identified causes. It was responsible for at least half of the deaths at the dive place. A quarter of the rescued IPE victims died because of early cardiac arrest.DISCUSSION: Helicopter evacuation is indicated when vital prognosis (IPE and pulmonary overpressure in particular) or neurological functional prognosis (decompression sickness) is of concern. IPE is the primary etiology in patients with serious dive injuries that are life-threatening and who will benefit from helicopter evacuation. A non-invasive ventilation device with inspiratory support and positive expiratory pressure must be used, in particular for IPE.Corgie L, Huiban N, Pontier J-M, Brocq F-X, Boulard J-F, Monteil M. Diving accident evacuations by helicopter and immersion pulmonary edema. Aerosp Med Hum Perform. 2020; 91(10):806811.


Sign in / Sign up

Export Citation Format

Share Document