Open-Loop Nash Equilibria for Dynamic Games Involving Volterra Integral Equations

Author(s):  
Dean A. Carlson
2018 ◽  
Vol 24 (4) ◽  
pp. 1849-1879 ◽  
Author(s):  
Tianxiao Wang

This paper is concerned with linear quadratic control problems of stochastic differential equations (SDEs, in short) and stochastic Volterra integral equations (SVIEs, in short). Notice that for stochastic systems, the control weight in the cost functional is allowed to be indefinite. This feature is demonstrated here only by open-loop optimal controls but not limited to closed-loop optimal controls in the literature. As to linear quadratic problem of SDEs, some examples are given to point out the issues left by existing papers, and new characterizations of optimal controls are obtained in different manners. For the study of SVIEs with deterministic coefficients, a class of stochastic Fredholm−Volterra integral equations is introduced to replace conventional forward-backward SVIEs. Eventually, instead of using convex variation, we use spike variation to obtain some additional optimality conditions of linear quadratic problems for SVIEs.


2021 ◽  
Vol 40 (3) ◽  
Author(s):  
Qiumei Huang ◽  
Min Wang

AbstractIn this paper, we discuss the superconvergence of the “interpolated” collocation solutions for weakly singular Volterra integral equations of the second kind. Based on the collocation solution $$u_h$$ u h , two different interpolation postprocessing approximations of higher accuracy: $$I_{2h}^{2m-1}u_h$$ I 2 h 2 m - 1 u h based on the collocation points and $$I_{2h}^{m}u_h$$ I 2 h m u h based on the least square scheme are constructed, whose convergence order are the same as that of the iterated collocation solution. Such interpolation postprocessing methods are much simpler in computation. We further apply this interpolation postprocessing technique to hybrid collocation solutions and similar results are obtained. Numerical experiments are shown to demonstrate the efficiency of the interpolation postprocessing methods.


2020 ◽  
Vol 28 (3) ◽  
pp. 209-216
Author(s):  
S. Singh ◽  
S. Saha Ray

AbstractIn this article, hybrid Legendre block-pulse functions are implemented in determining the approximate solutions for multi-dimensional stochastic Itô–Volterra integral equations. The block-pulse function and the proposed scheme are used for deriving a methodology to obtain the stochastic operational matrix. Error and convergence analysis of the scheme is discussed. A brief discussion including numerical examples has been provided to justify the efficiency of the mentioned method.


Sign in / Sign up

Export Citation Format

Share Document