event trees
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Nathan E. Wiltbank ◽  
Camille J. Palmer

This review paper highlights approaches and tools available to the nuclear industry for dynamic probabilistic risk assessment (DPRA) using dynamic event trees. DPRA is an emerging methodology that has advantages as compared to traditional, static PRA predominantly owing to the addition of time dependent modeling. Traditional PRAs predefine events and outcomes into Event Trees (ET) and Fault Trees (FT), that are coupled with various combinations of Initiating Events (IE), Top Events (TE), branches, end states and sequences. A more complete depiction of the system and accident progression behavior can be quantified using DPRA to account for dynamic events such as those involving human actions. This paper discusses the strengths and needs of existing DPRA tools to align with the risk informed methodology currently used in the nuclear industry. DPRA is evolving during an exciting time in the nuclear industry with emerging advanced reactor designs also coming on the scene. Advanced nuclear (Gen IV) designs often incorporate passively safe systems that have less readily available data for traditional PRA due to their limited operating history. DPRA is a promising methodology that can address this challenge and demonstrate to the regulatory bodies and public that advanced designs operate within safety margins. In this light, the paper considers the historical role of PRA in the nuclear industry and motivation for considering dynamic PRA models. An introduction to the differences inherent in DPRA and how it complements and enhances existing PRA approaches is discussed. Additionally, a review of research from U.S national laboratories and universities features recent DPRA tool advancements that could be applied in the nuclear industry. These DPRA approaches and tools are summarized and examined to thoughtfully provide a path forward to best leverage existing research and integrate DPRA into advanced reactor design and analysis.


2021 ◽  
Author(s):  
N.O. Dorodnykh ◽  
Y.V. Kotlov ◽  
O.A. Nikolaychuk ◽  
V.M. Popov ◽  
A.Y. Yurin

The complexity of creating artificial intelligence applications remains high. One of the factors that cause such complexity is the high qualification requirements for developers in the field of programming. Development complexity can be reduced by using methods and tools based on a paradigm known as End-user development. One of the problems that requires the application of the methods of this paradigm is the development of intelligent systems for supporting the search and troubleshooting onboard aircraft. Some tasks connected with this problem are identified, including the task of dynamic formation of task cards for troubleshooting in terms of forming a list of operations. This paper presents a solution to this problem based on some principles of End-user development: model-driven development, visual programming, and wizard form-filling. In particular, an extension of the Prototyping expert systems based on transformations technology, which implements the End-user development, is proposed in the context of the problem to be solved for Sukhoi Superjet aircraft. The main contribution of the work is as follows: expanded the main technology method by supporting event trees formalism (as a popular expert method for formalizing scenarios for the development of problem situations and their localization); created a domain-specific tool (namely, Extended event tree editor) for building standard and extended event trees, including for diagnostic tasks; developed a module for supporting transformations of XML-like event tree representation format for the knowledge base prototyping system – Personal knowledge base designer. A description of the proposed extension and the means of its implementation, as well as an illustrative example, are provided.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
A. H. Graettinger ◽  
A. T. Bearden

AbstractMaar volcanoes are produced by subsurface phreatomagmatic explosions that can move vertically and laterally during an eruption. Constraining the distances that maar-forming explosions move laterally, and the number of relocations common to these eruptions, is vital for informing hazard scenarios and numerical simulations. This study uses 241 intact Quaternary maar crater shapes to establish global trends in size and spacing of explosion position relocations. Maar craters are sorted into shape classes based on the presence of uniquely identifiable combinations of overlapping circular components in their geometry. These components are used to recognize the minimum number of explosion locations responsible for observed crater shapes. Craters with unique solutions are then used to measure the size and spacing of the explosion footprints, the circular area of the largest crater produced by a single explosion of a given energy, that produce the crater shape. Thus, even in the absence of abundant observations of maar-type eruptions, the typical range, size and spacing of explosion positions are derived from maar crater shapes. This analysis indicates that most Quaternary maar eruptions involved at least three different explosion locations spanning distances of 200–600 m that did not always follow the trend of the dike feeding the eruption. Additional evaluation of larger maars, consistent with stratigraphic studies, indicates that centers of explosive activity, and thus the origin of ballistic and density current hazards, can move as many as twenty times during a maar-forming eruption. These results provide the first quantitative constraints on the scale and frequency of lateral migration in maar eruptions and these values can directly contribute to hazard models and eruption event trees in advance of future maar-type eruptions.


2021 ◽  
Vol 205 ◽  
pp. 107246
Author(s):  
Cesar Queral ◽  
Kevin Fernández-Cosials ◽  
Eneko Zugazagoitia ◽  
Carlos Paris ◽  
Javier Magan ◽  
...  

2020 ◽  
Vol 18 (3) ◽  
pp. 164-173
Author(s):  
K. A. Bochkov ◽  
D. V. Komnatniy

The problem of quantitative analysis of safety of microelectronic and microprocessor systems of railway automation and telemechanics is considered. The problem remains relevant, since the subject of safety analysis is rarely occurring, but extremely dangerous events. The risk and significance of failure are selected as the main safety features of these systems. The way to identify a failure was chosen according to MILSTD‑1629A standard, as the most adequate.Calculated expressions for significance of a failure are proposed. The probability of a dangerous failure is calculated by the method of model analysis. It is proposed to calculate the probability of a failure further developing into an accident using scenario analysis methods by constructing event trees. Calculated ratios for ratings of violations are suggested, allowing to compare dangerous failures and emergency sequences developed from a failure. The risk assessment of operation of railway automation systems was selected not related to economic categories, and thus convenient for rationing. It is based on probabilistic concepts of the nature of risk and is calculated using the methods of probability theory. The developed design ratios and models make it possible to analyze performance of the functions of train traffic safety systems by methods common to control systems, at the same time reflecting the features of operation of railway automation.


Sign in / Sign up

Export Citation Format

Share Document