On the Deployment of Factor Graph Elements to Operate Max-Sum in Dynamic Ambient Environments

Author(s):  
Pierre Rust ◽  
Gauthier Picard ◽  
Fano Ramparany
Keyword(s):  
2013 ◽  
Vol 32 (2) ◽  
pp. 343-346
Author(s):  
Xiang-ling LU ◽  
Zhi-yong ZHANG ◽  
Guang-min HU
Keyword(s):  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Chengkai Tang ◽  
Jiaqi Liu ◽  
Yi Zhang ◽  
Xingxing Zhu ◽  
Lingling Zhang

2020 ◽  
pp. 1-17
Author(s):  
Haiying Liu ◽  
Jingqi Wang ◽  
Jianxin Feng ◽  
Xinyao Wang

Abstract Visual–Inertial Navigation Systems (VINS) plays an important role in many navigation applications. In order to improve the performance of VINS, a new visual/inertial integrated navigation method, named Sliding-Window Factor Graph optimised algorithm with Dynamic prior information (DSWFG), is proposed. To bound computational complexity, the algorithm limits the scale of data operations through sliding windows, and constructs the states to be optimised in the window with factor graph; at the same time, the prior information for sliding windows is set dynamically to maintain interframe constraints and ensure the accuracy of the state estimation after optimisation. First, the dynamic model of vehicle and the observation equation of VINS are introduced. Next, as a contrast, an Invariant Extended Kalman Filter (InEKF) is constructed. Then, the DSWFG algorithm is described in detail. Finally, based on the test data, the comparison experiments of Extended Kalman Filter (EKF), InEKF and DSWFG algorithms in different motion scenes are presented. The results show that the new method can achieve superior accuracy and stability in almost all motion scenes.


Author(s):  
Jiahui Huang ◽  
Sheng Yang ◽  
Zishuo Zhao ◽  
Yu-Kun Lai ◽  
Shi-Min Hu

AbstractWe present a practical backend for stereo visual SLAM which can simultaneously discover individual rigid bodies and compute their motions in dynamic environments. While recent factor graph based state optimization algorithms have shown their ability to robustly solve SLAM problems by treating dynamic objects as outliers, their dynamic motions are rarely considered. In this paper, we exploit the consensus of 3D motions for landmarks extracted from the same rigid body for clustering, and to identify static and dynamic objects in a unified manner. Specifically, our algorithm builds a noise-aware motion affinity matrix from landmarks, and uses agglomerative clustering to distinguish rigid bodies. Using decoupled factor graph optimization to revise their shapes and trajectories, we obtain an iterative scheme to update both cluster assignments and motion estimation reciprocally. Evaluations on both synthetic scenes and KITTI demonstrate the capability of our approach, and further experiments considering online efficiency also show the effectiveness of our method for simultaneously tracking ego-motion and multiple objects.


2021 ◽  
Vol 13 (10) ◽  
pp. 1981
Author(s):  
Ruike Ren ◽  
Hao Fu ◽  
Hanzhang Xue ◽  
Zhenping Sun ◽  
Kai Ding ◽  
...  

High-precision 3D maps play an important role in autonomous driving. The current mapping system performs well in most circumstances. However, it still encounters difficulties in the case of the Global Navigation Satellite System (GNSS) signal blockage, when surrounded by too many moving objects, or when mapping a featureless environment. In these challenging scenarios, either the global navigation approach or the local navigation approach will degenerate. With the aim of developing a degeneracy-aware robust mapping system, this paper analyzes the possible degeneration states for different navigation sources and proposes a new degeneration indicator for the point cloud registration algorithm. The proposed degeneracy indicator could then be seamlessly integrated into the factor graph-based mapping framework. Extensive experiments on real-world datasets demonstrate that the proposed 3D reconstruction system based on GNSS and Light Detection and Ranging (LiDAR) sensors can map challenging scenarios with high precision.


2021 ◽  
Author(s):  
Lucas Tiziani ◽  
Yetong Zhang ◽  
Frank Dellaert ◽  
Frank L. Hammond

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3748 ◽  
Author(s):  
Chengkai Tang ◽  
Lingling Zhang ◽  
Yi Zhang ◽  
Houbing Song

The development of smart cities calls for improved accuracy in navigation and positioning services; due to the effects of satellite orbit error, ionospheric error, poor quality of navigation signals and so on, it is difficult for existing navigation technology to achieve further improvements in positioning accuracy. Distributed cooperative positioning technology can further improve the accuracy of navigation and positioning with existing GNSS (Global Navigation Satellite System) systems. However, the measured range error and the positioning error of the cooperative nodes exhibit larger reductions in positioning accuracy. In response to this question, this paper proposed a factor graph-aided distributed cooperative positioning algorithm. It establishes the confidence function of factor graphs theory with the ranging error and the positioning error of the coordinated nodes and then fuses the positioning information of the coordinated nodes by the confidence function. It can avoid the influence of positioning error and ranging error and improve the positioning accuracy of cooperative nodes. In the simulation part, the proposed algorithm is compared with a mainly coordinated positioning algorithm from four aspects: the measured range error, positioning error, convergence speed, and mutation error. The simulation results show that the proposed algorithm leads to a 30–60% improvement in positioning accuracy compared with other algorithms under the same measured range error and positioning error. The convergence rate and mutation error elimination times are only 1 / 5 to 1 / 3 of the other algorithms.


Sign in / Sign up

Export Citation Format

Share Document