Azimuthal Dependence of the Ground Motion Variability from Scenario Modeling of the 2014 Mw6.0 South Napa, California, Earthquake Using an Advanced Kinematic Source Model

Author(s):  
F. Gallovič
2011 ◽  
Vol 186 (1) ◽  
pp. 226-244 ◽  
Author(s):  
J. A. Ruiz ◽  
D. Baumont ◽  
P. Bernard ◽  
C. Berge-Thierry

2017 ◽  
Vol 15 (9) ◽  
pp. 3463-3482 ◽  
Author(s):  
Luca Moratto ◽  
Angela Saraò ◽  
Alessandro Vuan ◽  
Marco Mucciarelli ◽  
María-José Jiménez ◽  
...  

2016 ◽  
Vol 106 (4) ◽  
pp. 1584-1599 ◽  
Author(s):  
Jagdish Chandra Vyas ◽  
Paul Martin Mai ◽  
Martin Galis

2021 ◽  
Author(s):  
Jagdish Chandra Vyas ◽  
Martin Galis ◽  
Paul Martin Mai

<p>Geological observations show variations in fault-surface topography not only at large scale (segmentation) but also at small scale (roughness). These geometrical complexities strongly affect the stress distribution and frictional strength of the fault, and therefore control the earthquake rupture process and resulting ground-shaking. Previous studies examined fault-segmentation effects on ground-shaking, but our understanding of fault-roughness effects on seismic wavefield radiation and earthquake ground-motion is still limited.  </p><p>In this study we examine the effects of fault roughness on ground-shaking variability as a function of distance based on 3D dynamic rupture simulations. We consider linear slip-weakening friction, variations of fault-roughness parametrizations, and alternative nucleation positions (unilateral and bilateral ruptures). We use generalized finite difference method to compute synthetic waveforms (max. resolved frequency 5.75 Hz) at numerous surface sites  to carry out statistical analysis.  </p><p>Our simulations reveal that ground-motion variability from unilateral ruptures is almost independent of  distance from the fault, with comparable or higher values than estimates from ground-motion prediction equations (e.g., Boore and Atkinson, 2008; Campbell and Bozornia, 2008). However, ground-motion variability from bilateral ruptures decreases with increasing distance, in contrast to previous studies (e.g., Imtiaz et. al., 2015) who observe an increasing trend with distance. Ground-shaking variability from unilateral ruptures is higher than for bilateral ruptures, a feature due to intricate seismic radiation patterns related to fault roughness and hypocenter location. Moreover, ground-shaking variability for rougher faults is lower than for smoother faults. As fault roughness increases the difference in ground-shaking variabilities between unilateral and bilateral ruptures increases. In summary, our simulations help develop a fundamental understanding of ground-motion variability at high frequencies (~ 6 Hz) due small-scale geometrical fault-surface variations.</p>


1983 ◽  
Vol 73 (1) ◽  
pp. 83-96 ◽  
Author(s):  
Michel Campillo ◽  
Michel Bouchon

abstract We present a study of the seismic radiation of a physically realistic source model—the circular crack model of Madariaga—at close distance range and for vertically heterogeneous crustal structures. We use this model to represent the source of small strike-slip earthquakes. We show that the characteristics of the radiated seismic spectra, like the corner frequency, are strongly affected by the presence of the free surface and by crustal layering, and that they can be considerably different from the ones of the homogeneous-medium far-field solution. The vertical and radial displacement spectra are the most strongly affected. We use this source model to calculate the decay of peak ground velocity with epicentral distance and source depth for small strike-slip earthquakes in California. For distances between 10 and 80 km, the peak horizontal velocity decay is of the form r−1.25 for a 4-km hypocentral depth and r−1.65 for deeper sources. The predominance of supercritically reflected arrivals beyond epicentral distances of 70 to 80 km produces a sharp change in the rate of decay of the ground motion. For most of the cases considered, the peak ground velocity increases between 80 and 100 km. We also show that the S-wave velocity in the source layer is the lower limit of phase velocities associated with significant ground motion.


2021 ◽  
Author(s):  
Olga-Joan Ktenidou ◽  
Faidra Gkika ◽  
Erion-Vasilis Pikoulis ◽  
Christos Evangelidis

<p>Although it is nowadays desirable and even typical to characterise site conditions in detail at modern recording stations, this is not yet a general rule in Greece, due to the large number and geographical dispersion of stations. Indeed, most of them are still characterised merely through geological descriptions or proxy-based parameters, rather than through in-situ measurements. Considering: 1. the progress made in recent years with sophisticated ground motion models and the need to define region-specific rock conditions based on data, 2. the move towards large open-access strong-motion databases that require detailed site metadata, and 3. that Greek-provenance recordings represent a significant portion of European seismic data, there are many reasons to improve our understanding of site response at these stations. Moreover, it has been shown recently in several regions that even sites considered as rock can exhibit amplification and ground motion variability, which has given rise to more scientific research into the definition of reference sites. For Greece, in-situ-characterisation campaigns for the entire network would impose unattainable time/budget constraints; so, instead, we implement alternative empirical approaches using the recordings themselves, such as the horizontal-to-vertical spectral ratio technique and its variability. We present examples of 'well-behaved', typical rock sites, and others whose response diverges from what is assumed for their class.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document