Is Connectivity a Desirable Property in Urban Resilience Assessments?

Author(s):  
Marta Olazabal ◽  
Lorenzo Chelleri ◽  
Ayyoob Sharifi
2021 ◽  
pp. 103210
Author(s):  
Dezhi Li ◽  
Guanying Huang ◽  
Dezhi Li ◽  
Xiongwei Zhu ◽  
Jin Zhu

2021 ◽  
Vol 13 (9) ◽  
pp. 4666
Author(s):  
Yoonshin Kwak ◽  
Brian Deal ◽  
Grant Mosey

Given that evolving urban systems require ever more sophisticated and creative solutions to deal with uncertainty, designing for resilience in contemporary landscape architecture represents a cross-disciplinary endeavor. While there is a breadth of research on landscape resilience within the academy, the findings of this research are seldom making their way into physical practice. There are existent gaps between the objective, scientific method of scientists and the more intuitive qualitative language of designers and practitioners. The purpose of this paper is to help bridge these gaps and ultimately support an endemic process for more resilient landscape design creation. This paper proposes a framework that integrates analytic research (i.e., modeling and examination) and design creation (i.e., place-making) using processes that incorporate feedback to help adaptively achieve resilient design solutions. Concepts of Geodesign and Planning Support Systems (PSSs) are adapted as part of the framework to emphasize the importance of modeling, assessment, and quantification as part of processes for generating information useful to designers. This paper tests the suggested framework by conducting a pilot study using a coupled sociohydrological model. The relationships between runoff and associated design factors are examined. Questions on how analytic outcomes can be translated into information for landscape design are addressed along with some ideas on how key variables in the model can be translated into useful design information. The framework and pilot study support the notion that the creation of resilient communities would be greatly enhanced by having a navigable bridge between science and practice.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1902
Author(s):  
Martin Oberascher ◽  
Aun Dastgir ◽  
Jiada Li ◽  
Sina Hesarkazzazi ◽  
Mohsen Hajibabaei ◽  
...  

Smart rainwater harvesting (RWH) systems can automatically release stormwater prior to rainfall events to increase detention capacity on a household level. However, impacts and benefits of a widespread implementation of these systems are often unknown. This works aims to investigate the effect of a large-scale implementation of smart RWH systems on urban resilience by hypothetically retrofitting an Alpine municipality with smart rain barrels. Smart RWH systems represent dynamic systems, and therefore, the interaction between the coupled systems RWH units, an urban drainage network (UDN) and digital infrastructure is critical for evaluating resilience against system failures. In particular, digital parameters (e.g., accuracy of weather forecasts, or reliability of data communication) can differ from an ideal performance. Therefore, different digital parameters are varied to determine the range of uncertainties associated with smart RWH systems. As the results demonstrate, smart RWH systems can further increase integrated system resilience but require a coordinated integration into the overall system. Additionally, sufficient consideration of digital uncertainties is of great importance for smart water systems, as uncertainties can reduce/eliminate gained performance improvements. Moreover, a long-term simulation should be applied to investigate resilience with digital applications to reduce dependence on boundary conditions and rainfall patterns.


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Ayyoob Sharifi ◽  
Maryam Roosta ◽  
Masoud Javadpoor

As cities are exposed to a portfolio of risks, the concept of resilience has risen to prominence over the past two decades. Consequently, a large volume of research has been published on different aspects of urban resilience. However, urban form resilience is still relatively understudied. As a step toward filling this gap, this study examines resilience of nine selected neighborhoods from Shiraz, an old Iranian city. The selected cases represent three different urban form patterns, namely, traditional, semi-planned, and planned. Different indicators related to the physical configuration of lots, blocks, open and green spaces, and street networks are used to examine resilience of each neighborhood to three major stressors, namely, earthquakes, extreme heat events, and floods. Additionally, a combination of Shannon entropy and the VIKOR (VlseKriterijumska Optimizcija I Kaompromisno Resenje in Serbian) method is used to rank the resilience of each neighborhood to each of the three stressors. Results show that, overall, the physical form of the planned neighborhoods is more conducive to urban resilience. In contrast, the urban form of traditional neighborhoods was found to be less resilient. There were, however, some variations depending on the type of stressor considered. The paper concludes by emphasizing the need to consider social and economic factors in future studies of urban form resilience.


2021 ◽  
Vol 214 ◽  
pp. 104173
Author(s):  
Tischa A. Muñoz-Erickson ◽  
Sara Meerow ◽  
Robert Hobbins ◽  
Elizabeth Cook ◽  
David M. Iwaniec ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document