A Comparison of Data Fragmentation Techniques in Cloud Servers

Author(s):  
Salvatore Lentini ◽  
Enrico Grosso ◽  
Giovanni L. Masala
2019 ◽  
Vol 10 (4) ◽  
pp. 392
Author(s):  
Bogdan Ghita ◽  
Giovanni Masala ◽  
Enrico Grosso ◽  
Salvatore Lentini ◽  
Nelson Santos

Author(s):  
P. Sudheer ◽  
T. Lakshmi Surekha

Cloud computing is a revolutionary computing paradigm, which enables flexible, on-demand, and low-cost usage of computing resources, but the data is outsourced to some cloud servers, and various privacy concerns emerge from it. Various schemes based on the attribute-based encryption have been to secure the cloud storage. Data content privacy. A semi anonymous privilege control scheme AnonyControl to address not only the data privacy. But also the user identity privacy. AnonyControl decentralizes the central authority to limit the identity leakage and thus achieves semi anonymity. The  Anonymity –F which fully prevent the identity leakage and achieve the full anonymity.


Author(s):  
Priya Mathur ◽  
Amit Kumar Gupta ◽  
Prateek Vashishtha

Cloud computing is an emerging technique by which anyone can access the applications as utilities over the internet. Cloud computing is the technology which comprises of all the characteristics of the technologies like distributed computing, grid computing, and ubiquitous computing. Cloud computing allows everyone to create, to configure as well as to customize the business applications online. Cryptography is the technique which is use to convert the plain text into cipher text using various encryption techniques. The art and science used to introduce the secrecy in the information security in order to secure the messages is defined as cryptography. In this paper we are going to review few latest Cryptographic algorithms which are used to enhance the security of the data on the cloud servers. We are comparing Short Range Natural Number Modified RSA (SRNN), Elliptic Curve Cryptography Algorithm, Client Side Encryption Technique and Hybrid Encryption Technique to secure the data in cloud.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 621
Author(s):  
Giuseppe Psaila ◽  
Paolo Fosci

Internet technology and mobile technology have enabled producing and diffusing massive data sets concerning almost every aspect of day-by-day life. Remarkable examples are social media and apps for volunteered information production, as well as Open Data portals on which public administrations publish authoritative and (often) geo-referenced data sets. In this context, JSON has become the most popular standard for representing and exchanging possibly geo-referenced data sets over the Internet.Analysts, wishing to manage, integrate and cross-analyze such data sets, need a framework that allows them to access possibly remote storage systems for JSON data sets, to retrieve and query data sets by means of a unique query language (independent of the specific storage technology), by exploiting possibly-remote computational resources (such as cloud servers), comfortably working on their PC in their office, more or less unaware of real location of resources. In this paper, we present the current state of the J-CO Framework, a platform-independent and analyst-oriented software framework to manipulate and cross-analyze possibly geo-tagged JSON data sets. The paper presents the general approach behind the J-CO Framework, by illustrating the query language by means of a simple, yet non-trivial, example of geographical cross-analysis. The paper also presents the novel features introduced by the re-engineered version of the execution engine and the most recent components, i.e., the storage service for large single JSON documents and the user interface that allows analysts to comfortably share data sets and computational resources with other analysts possibly working in different places of the Earth globe. Finally, the paper reports the results of an experimental campaign, which show that the execution engine actually performs in a more than satisfactory way, proving that our framework can be actually used by analysts to process JSON data sets.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


2020 ◽  
Vol 53 (5) ◽  
pp. 1-41 ◽  
Author(s):  
Weiwei Lin ◽  
Fang Shi ◽  
Wentai Wu ◽  
Keqin Li ◽  
Guangxin Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document