Low-Cost Ultrapure Sine Wave Generation with Self-Calibration

Author(s):  
Yuming Zhuang ◽  
Degang Chen
Author(s):  
Yuming Zhuang ◽  
Akhilesh Kesavan Unnithan ◽  
Arun Joseph ◽  
Siva Sudani ◽  
Benjamin Magstadt ◽  
...  

Author(s):  
Abul Al Arabi ◽  
Rayhan Sardar Tipu ◽  
Mohammad Raihanul Bashar ◽  
Binoy Barman ◽  
Shama Ali Monicay ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jiangnan Xiao ◽  
Chuang Zhao ◽  
Xingxing Feng ◽  
Xu Dong ◽  
Jiangli Zuo ◽  
...  

With the development trend of wireless and broadband in the communication link and even the whole information industry, the demand of high-frequency microwave bandwidth has been increasing. The RoF network system solves the problem of spectrum congestion in low-frequency band by providing an effective technology for the distribution of high-frequency microwave signals over optical fiber links. However, the traditional mm-wave generation technique is limited by the bandwidth of electronic devices. It is difficult to generate high-frequency and low-phase noise mm-wave signals with pure electrical components. The mm-wave communication technology based on photon assisted can overcome the bandwidth bottleneck of electronic devices and provide the potential for developing the low-cost infrastructure demand of broadband mobile services. This paper will briefly explain the characteristics of the RoF network system and the advantages of high-frequency mm-wave. Then we, respectively, introduce the modulation schemes of RoF mm-wave generation based on photon assisted including directly modulated laser (DML), external modulation, and optical heterodyne. The review mainly focuses on a variety of different mm-wave generation technologies including multifrequency vector mm-wave. Furthermore, we list several approaches to realize the large capacity data transmission techniques and describe the digital signal processing (DSP) algorithm flow in the receiver. In the end, we summarize the RoF network system and look forward to the future.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4730
Author(s):  
Tuukka Mustapää ◽  
Pekka Nikander ◽  
Daniel Hutzschenreuter ◽  
Raine Viitala

IoT systems based on collaborative sensor networks are becoming increasingly common in various industries owing to the increased availability of low-cost sensors. The quality of the data provided by these sensors may be unknown. For these reasons, advanced data processing and sensor network self-calibration methods have become popular research topics. In terms of metrology, the self-calibration methods lack the traceability to the established measurement standards of National Metrology Institutes (NMIs) through an unbroken chain-link of calibration. This problem can be solved by the ongoing digitalization of the metrology infrastructure. We propose a conceptual solution based on Digital Calibration Certificates (DCCs), Digital SI (D-SI), and cryptographic digital identifiers, for validation of data quality and trustworthiness. The data that enable validation and traceability can be used to improve analytics, decision-making, and security in industrial applications. We discuss the applicability and benefits of our solutions in a selection of industrial use cases, where collaborative sensing has already been introduced. We present the remaining challenges in the digitization and standardization processes regarding digital metrology and the future work required to address them.


Sign in / Sign up

Export Citation Format

Share Document