Handoff Prediction for Femtocell Network in Indoor Environment Using Hidden Markov Model

Author(s):  
Pengbo Yang ◽  
Xi Li ◽  
Hong Ji ◽  
Heli Zhang
Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6778
Author(s):  
Oluwaseyi Paul Babalola ◽  
Vipin Balyan

Over the years, WiFi received signal strength indicator (RSSI) measurements have been widely implemented for determining the location of a user’s position in an indoor environment, where the GPS signal might not be received. This method utilizes a huge RSSI dataset collected from numerous access points (APs). The WiFi RSSI measurements are nonlinear with distance and are largely influenced by interference in the indoor environment. Therefore, machine learning (ML) techniques such as a hidden Markov model (HMM) are generally utilized to efficiently identify a trend of RSSI values, which corresponds to locations around a region of interest. Similar to other ML tools, the performance and computing cost of the HMM are dependent on the feature dimension since a large quantity of RSSI measurements are required for the learning process. Hence, this article introduces a feature extraction method based on dynamic mode decomposition (DMD) for the HMM to effectively model WiFi fingerprint indoor localization. The DMD is adopted since it decomposes RSSIs to meaningful spatial and temporal forms over a given time. Here, the mode forms are analytically reconstructed to produce low-dimensional feature vectors, which are used with the HMM. The localization performance of the proposed HMM-DMD is compared with other well-known ML algorithms for WiFi fingerprinting localization using simulations. The results show that the HMM-DMD algorithm yields a significant localization performance improvement, accuracy, and reasonable processing time in comparison with the state-of-the-art algorithms.


2012 ◽  
Vol 132 (10) ◽  
pp. 1589-1594 ◽  
Author(s):  
Hayato Waki ◽  
Yutaka Suzuki ◽  
Osamu Sakata ◽  
Mizuya Fukasawa ◽  
Hatsuhiro Kato

MIS Quarterly ◽  
2018 ◽  
Vol 42 (1) ◽  
pp. 83-100 ◽  
Author(s):  
Wei Chen ◽  
◽  
Xiahua Wei ◽  
Kevin Xiaoguo Zhu ◽  
◽  
...  

2016 ◽  
Vol 7 (2) ◽  
pp. 76-82
Author(s):  
Hugeng Hugeng ◽  
Edbert Hansel

We have built an application of speech recognition for Indonesian geography dictionary based on Android operating system, named GAIA. This application uses a smartphone as a device to receive input in the form of a spoken word from a user. The approach used in recognition is Hidden Markov Model which is contained in the Pocketsphinx library. The phonemes used are Indonesian phonemes’ rule. The advantage of this application is that it can be used without internet access. In the application testing, word detection is done with four conditions to determine the level of accuracy. The four conditions are near silent, near noisy, far silent, and far noisy. From the testing and analysis conducted, it can be concluded that GAIA application can be built as a speech recognition application on Android for Indonesian geography dictionary; with the results in the near silent condition accuracy of word recognition reaches an average of 52.87%, in the near noisy reaches an average of 14.5%, in the far silent condition reaches an average of 23.2%, and in the far noisy condition reaches an average of 2.8%. Index Terms—speech recognition, Indonesian geography dictionary, Hidden Markov Model, Pocketsphinx, Android.


2001 ◽  
Author(s):  
A. D. Chan ◽  
K. Englehart ◽  
B. Hudgins ◽  
D. F. Lovely

Sign in / Sign up

Export Citation Format

Share Document