femtocell network
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 21)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 13 (1) ◽  
pp. 18-24
Author(s):  
Adisti Nabilah Naufallia ◽  
Anggun Fitrian Isnawati ◽  
Khoirun Ni’amah

The indoor communication system is a system to solve the problem of weak signals received by placing a Femtocell Access Point (FAP) indoor area. The design of an indoor cellular communication network system is carried out using the Radiowave Propagation Simulator 5.4. The parameters observed were Received Signal Level (RSL) and Signal to Interface Ratio (SIR). The case study is the passenger carriage of the executive, business and economy passenger class. The research includes link budget calculations based on coverage and capacity by considering the type of train carriage material and train passenger capacity. The calculation results based on capacity obtained 1 FAP for executive and business class train passenger cars, while economy class train passenger cars obtained 2 FAP. The best scenario for executive class namely scenario 1A, the receiver gets average RSL of approximately -32.26 dBm and SIR of 0 dB. The best scenario for business class namely scenario 2A, the receiver gets average RSL of approximately -32.57 dBm and SIR of 0 dB.  The best scenario for economy class namely scenario 3A, the receiver gets average RSL of approximately -29.80 dBm and the receiver gets average SIR of approximately 6.97 dB


2021 ◽  
Author(s):  
Joydev Ghosh

<div>This research work explores small cell densification as a key technique for next generation wireless network (NGWN). Small cell densification comprises space (i.e, dense deployment of femtocells) and spectrum (i.e., utilization of frequency band at large). The usage of femtocells not only improves the spectral efficiency (SE) of the Heterogeneous two-tier networks against conventional approach, but also it alleviates outage probability and enhances the achievable capacity. We yield an analytical framework to establish the density of the femto base station (FBS) to a monotonically increasing or decreasing function of distance or radius, respectively. This ensures the enhanced performance in spectrum sharing Orthogonal Frequency Division Multiple Access (OFDMA) femtocell network models. We also illustrate the influence of active Femto users (i.e., users in femtocells, and they are usually low mobility and located closer to the cell centre with less fading), cluster size (i.e., a group of adjacent macrocells which use all of the systems frequency assignments) via simulation results.</div>


2021 ◽  
Author(s):  
Joydev Ghosh

<div>This research work explores small cell densification as a key technique for next generation wireless network (NGWN). Small cell densification comprises space (i.e, dense deployment of femtocells) and spectrum (i.e., utilization of frequency band at large). The usage of femtocells not only improves the spectral efficiency (SE) of the Heterogeneous two-tier networks against conventional approach, but also it alleviates outage probability and enhances the achievable capacity. We yield an analytical framework to establish the density of the femto base station (FBS) to a monotonically increasing or decreasing function of distance or radius, respectively. This ensures the enhanced performance in spectrum sharing Orthogonal Frequency Division Multiple Access (OFDMA) femtocell network models. We also illustrate the influence of active Femto users (i.e., users in femtocells, and they are usually low mobility and located closer to the cell centre with less fading), cluster size (i.e., a group of adjacent macrocells which use all of the systems frequency assignments) via simulation results.</div>


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In this paper, we initially dealt with the issue of spectrum allocation among macro (or “licensed”) and Femto (or “unlicensed”) users in an orthogonal frequency division multiple access (OFDMA) femtocell network of non- ooperative game theoretic frequency reuse approach. We formulate the difficulty based on spectrum bidding. Here individual Secondary Users (SU) create an auction for the amount of bandwidth and every PU can share the frequency band among SUs by itself according to the intelligence from SUs without lowering its own performance. Here, we consider that the bidding is a non- ooperative game and one of its solutions is a Nash Equilibrium (NE). The femto base stations (FBSs) are grouped into different cluster for mitigating the undesired interference among them. The game theoretical method deals with the inter-cluster frequency clashes.We exemplified a link between utility function and the number of players by non-cooperative game theoretic approach to guide the spectrum sharing decision at the cell edges. The convergence of the development mechanism is rigorously scrutinized and extensive numerical outcomes are presented to illustrate their potential merits.</div>


2021 ◽  
Author(s):  
Joydev Ghosh

<div>In this paper, we initially dealt with the issue of spectrum allocation among macro (or “licensed”) and Femto (or “unlicensed”) users in an orthogonal frequency division multiple access (OFDMA) femtocell network of non- ooperative game theoretic frequency reuse approach. We formulate the difficulty based on spectrum bidding. Here individual Secondary Users (SU) create an auction for the amount of bandwidth and every PU can share the frequency band among SUs by itself according to the intelligence from SUs without lowering its own performance. Here, we consider that the bidding is a non- ooperative game and one of its solutions is a Nash Equilibrium (NE). The femto base stations (FBSs) are grouped into different cluster for mitigating the undesired interference among them. The game theoretical method deals with the inter-cluster frequency clashes.We exemplified a link between utility function and the number of players by non-cooperative game theoretic approach to guide the spectrum sharing decision at the cell edges. The convergence of the development mechanism is rigorously scrutinized and extensive numerical outcomes are presented to illustrate their potential merits.</div>


2020 ◽  
Vol 13 (41) ◽  
pp. 4287-4296
Author(s):  
P Madhu ◽  

Background: The most challenging problem in femtocell networks is alleviating the Inter-Cell Interference (ICI) between the macro and femtocells while broadcasting the video streams in the Heterogeneous Networks (HetNets). It degrades the spectral efficacy and throughput significantly. To alleviate this problem, a Joint dynamic Layer, Channel and Power assignment with Further enhanced ICI Coordination (JLCP-FeICIC) method was recommended to assign the resources within every User Equipments (UEs) and enhance the throughput in a two-tier HetNets. Nonetheless, it schedules only the Cell Range Expansion (CRE) UEs of femtocells while the center UEs are not assigned and so the fairness of Resource Block (RB) allocation is reduced. Objective: Therefore in this study, JLCP-FeICIC is further enhanced with the Coordinated Multipoint Transmission (CMT) method (JLCP-FeICIC-CMT) for maximizing the efficiency of the HetNetcenter UEs. Methods: In this method, RBs are assigned by a primary scheduler. Also, the UE is detected in every eNodeBs (eNBs) according to the determination of the interference from the adjacent cells. Then, the Modulation and Coding Scheme (MCS) level is selected in all eNBs for UEs with and without the support of CMT according to the interference-free RB allocation. So, a higher level of spectral efficiency is achieved for corresponding RBs. Findings: Finally, the experimental results exhibit the JLCP-FeICIC-CMT achieves an increased efficacy than the JLCP-FeICIC.The efficiency is analyzed based on the average of Peak Singal-to-Noise Ratio (PSNR) per Femtocell UE (FUE), utility, monetary cost, and Playback Interruption Rate (PIR). Keywords: Femtocell network; HetNet; JLCPFeICIC; coordinated multipoint transmission; modulation and coding scheme


2020 ◽  
Vol 17 (2) ◽  
pp. 145
Author(s):  
Muhammad Yaser

<p><em>Coexistence GSM network and LTE femto relies on the number of femtocell deployment position. In the earlier study, the impact of macrocell size, femtocell deployment position, and coexistence LTE femtocell network integrated with GSM macrocell had been discussed. LTE femtocell used Orthogonal Frequency Division Multiplexing (OFDM) technology for its operation. In coexistence networks, LTE femtocells operate with OFDM technology so that they can utilize several radio frequency fractions without disturbing other parts of the frequency located between them. Unfortunately, the impact of femtocell number on the coexistence network had not been discussed. SINR and femtocell throughput performance are mathematically analyzed. The result showed that femtocell number had an effect on the coexistence network performance. SINR GSM, SINR femtocell and femtocell throughput significantly degraded as the femtocell number increased. The increasing femtocell number from M =0 to M =20 on each GSM cell cause around 14 dB degradation in SINR GSM, 3 dB decline in SINR Femto, approximately 1.7% decline in throughput for K = 4. Meanwhile for K = 7, the increasing femtocell number cause 17 dB decline in SINR GSM 6,5 dB decline in SINR Femto and 3.2 % decline in throughput. Those happened since the LTE femtocell interference went up. So femtocell number greatly influences the Coexistence GSM Network and LTE femtocell.</em></p><p><em><br /></em></p><p><em>Jaringan koeksistensi GSM dan LTE Femto sangat tergantung pada kondisi sebaran femtocell, di</em><em> </em><em>antaranya jumlah femtocell. Pada studi sebelumnya telah dibahas mengenai pengaruh ukuran macrocell dan posisi penyebaran femtocell dan jaringan koeksistensi LTE femtocell yang diintegrasikan dengan GSM macrocell. Dalam jaringan koeksistensi, LTE femtocell beroperasi dengan teknologi Orthogonal Frequency Division Multiplexing (OFDM) sehingga dapat memanfaatkan beberapa fraksi frekuensi radio tanpa mengganggu bagian lain dari frekuensi yang terletak di antaranya Namun studi sebelumnya belum membahas pengaruh jumlah femtocell pada jaringan koeksistensi ini. Kinerja kedua sistem yang dalam hal ini SINR dan femtocell throughput dianalisis secara matematis. Hasil simulasi menunjukan bahwa jumlah femtocell memiliki efek pada kinerja jaringan koeksistensi. SINR GSM, SINR femtocell dan femtocell throughput semakin menurun seiring dengan peningkatan jumlah femtocell</em><em>.</em><em> Peningkatan jumlah femtocell dari M = 0 ke M = 20 pada setiap sel GSM menyebabkan penurunan sekitar 14</em><em> </em><em>dB SINR GSM, penurunan 3</em><em> </em><em>dB SINR Femto, sekitar1, 7% penurunan throughput untuk K = 4. Sementara itu untuk K = 7, peningkatan junlah femtocell menyebabkan penurunan 17</em><em> </em><em>dB SINR GSM, penurunan 6.5</em><em> </em><em>dB SINR Femtocell dan penurunan 3, 2% dalam throughput. Hal ini disebabkan oleh peningkatan interferensi dari LTE femtocell. Maka jumlah LTE femtocell sangat mempengaruhi sistem koeksistensi LTE femtocell dengan jaringan GSM</em><em>.</em><em></em></p><p><em><br /></em></p>


Sign in / Sign up

Export Citation Format

Share Document