MPOPE: Multi-provider Order-Preserving Encryption for Cloud Data Privacy

Author(s):  
Jinwen Liang ◽  
Zheng Qin ◽  
Sheng Xiao ◽  
Jixin Zhang ◽  
Hui Yin ◽  
...  
Keyword(s):  
Author(s):  
P. Sudheer ◽  
T. Lakshmi Surekha

Cloud computing is a revolutionary computing paradigm, which enables flexible, on-demand, and low-cost usage of computing resources, but the data is outsourced to some cloud servers, and various privacy concerns emerge from it. Various schemes based on the attribute-based encryption have been to secure the cloud storage. Data content privacy. A semi anonymous privilege control scheme AnonyControl to address not only the data privacy. But also the user identity privacy. AnonyControl decentralizes the central authority to limit the identity leakage and thus achieves semi anonymity. The  Anonymity –F which fully prevent the identity leakage and achieve the full anonymity.


Author(s):  
Poovizhi. M ◽  
Raja. G

Using Cloud Storage, users can tenuously store their data and enjoy the on-demand great quality applications and facilities from a shared pool of configurable computing resources, without the problem of local data storage and maintenance. However, the fact that users no longer have physical possession of the outsourced data makes the data integrity protection in Cloud Computing a formidable task, especially for users with constrained dividing resources. From users’ perspective, including both individuals and IT systems, storing data remotely into the cloud in a flexible on-demand manner brings tempting benefits: relief of the burden for storage management, universal data access with independent geographical locations, and avoidance of capital expenditure on hardware, software, and personnel maintenances, etc. To securely introduce an effective Sanitizer and third party auditor (TPA), the following two fundamental requirements have to be met: 1) TPA should be able to capably audit the cloud data storage without demanding the local copy of data, and introduce no additional on-line burden to the cloud user; 2) The third party auditing process should take in no new vulnerabilities towards user data privacy. In this project, utilize and uniquely combine the public auditing protocols with double encryption approach to achieve the privacy-preserving public cloud data auditing system, which meets all integrity checking without any leakage of data. To support efficient handling of multiple auditing tasks, we further explore the technique of online signature to extend our main result into a multi-user setting, where TPA can perform multiple auditing tasks simultaneously. We can implement double encryption algorithm to encrypt the data twice and stored cloud server in Electronic Health Record applications.


Author(s):  
Malay Kumar ◽  
Manu Vardhan

The growth of the cloud computing services and its proliferation in business and academia has triggered enormous opportunities for computation in third-party data management settings. This computing model allows the client to outsource their large computations to cloud data centers, where the cloud server conducts the computation on their behalf. But data privacy and computational integrity are the biggest concern for the client. In this article, the authors attempt to present an algorithm for secure outsourcing of a covariance matrix, which is the basic building block for many automatic classification systems. The algorithm first performs some efficient transformation to protect the privacy and verify the computed result produced by the cloud server. Further, an analytical and experimental analysis shows that the algorithm is simultaneously meeting the design goals of privacy, verifiability and efficiency. Also, found that the proposed algorithm is about 7.8276 times more efficient than the direct implementation.


2015 ◽  
pp. 426-458 ◽  
Author(s):  
S. R. Murugaiyan ◽  
D. Chandramohan ◽  
T. Vengattaraman ◽  
P. Dhavachelvan

The present focuses on the Cloud storage services are having a critical issue in handling the user's private information and its confidentiality. The User data privacy preserving is a vital facet of online storage in cloud computing. The information in cloud data storage is underneath, staid molests of baffling addict endeavor, and it may leads to user clandestine in a roar privacy breach. Moreover, privacy preservation is an indeed research pasture in contemporary information technology development. Preserving User Data in Cloud Service (PUDCS) happens due to the data privacy breach results to a rhythmic way of intruding high confidential digital storage area and barter those information into business by embezzle others information. This paper focuses on preventing (hush-hush) digital data using the proposed privacy preserving framework. It also describes the prevention of stored data and de-identifying unauthorized user attempts, log monitoring and maintaining it in the cloud for promoting allusion to providers and users.


Author(s):  
Kiritkumar J. Modi ◽  
Prachi Devangbhai Shah ◽  
Zalak Prajapati

The rapid growth of digitization in the present era leads to an exponential increase of information which demands the need of a Big Data paradigm. Big Data denotes complex, unstructured, massive, heterogeneous type data. The Big Data is essential to the success in many applications; however, it has a major setback regarding security and privacy issues. These issues arise because the Big Data is scattered over a distributed system by various users. The security of Big Data relates to all the solutions and measures to prevent the data from threats and malicious activities. Privacy prevails when it comes to processing personal data, while security means protecting information assets from unauthorized access. The existence of cloud computing and cloud data storage have been predecessor and conciliator of emergence of Big Data computing. This article highlights open issues related to traditional techniques of Big Data privacy and security. Moreover, it also illustrates a comprehensive overview of possible security techniques and future directions addressing Big Data privacy and security issues.


Computers ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Yeong-Cherng Hsu ◽  
Chih-Hsin Hsueh ◽  
Ja-Ling Wu

With the growing popularity of cloud computing, it is convenient for data owners to outsource their data to a cloud server. By utilizing the massive storage and computational resources in cloud, data owners can also provide a platform for users to make query requests. However, due to the privacy concerns, sensitive data should be encrypted before outsourcing. In this work, a novel privacy preserving K-nearest neighbor (K-NN) search scheme over the encrypted outsourced cloud dataset is proposed. The problem is about letting the cloud server find K nearest points with respect to an encrypted query on the encrypted dataset, which was outsourced by data owners, and return the searched results to the querying user. Comparing with other existing methods, our approach leverages the resources of the cloud more by shifting most of the required computational loads, from data owners and query users, to the cloud server. In addition, there is no need for data owners to share their secret key with others. In a nutshell, in the proposed scheme, data points and user queries are encrypted attribute-wise and the entire search algorithm is performed in the encrypted domain; therefore, our approach not only preserves the data privacy and query privacy but also hides the data access pattern from the cloud server. Moreover, by using a tree structure, the proposed scheme could accomplish query requests in sub-liner time, according to our performance analysis. Finally, experimental results demonstrate the practicability and the efficiency of our method.


2018 ◽  
Vol 12 (2) ◽  
pp. 1-25 ◽  
Author(s):  
Malay Kumar ◽  
Manu Vardhan

The growth of the cloud computing services and its proliferation in business and academia has triggered enormous opportunities for computation in third-party data management settings. This computing model allows the client to outsource their large computations to cloud data centers, where the cloud server conducts the computation on their behalf. But data privacy and computational integrity are the biggest concern for the client. In this article, the authors attempt to present an algorithm for secure outsourcing of a covariance matrix, which is the basic building block for many automatic classification systems. The algorithm first performs some efficient transformation to protect the privacy and verify the computed result produced by the cloud server. Further, an analytical and experimental analysis shows that the algorithm is simultaneously meeting the design goals of privacy, verifiability and efficiency. Also, found that the proposed algorithm is about 7.8276 times more efficient than the direct implementation.


Author(s):  
SYEDA FARHA SHAZMEEN ◽  
RANGARAJU DEEPIKA

Cloud Computing is a construct that allows you to access applications that actually reside at a location other than our computer or other internet-connected devices, Cloud computing uses internet and central remote servers to maintain data and applications, the data is stored in off-premises and accessing this data through keyword search. So there comes the importance of encrypted cloud data search Traditional keyword search was based on plaintext keyword search, but for protecting data privacy the sensitive data should be encrypted before outsourcing. Fuzzy keyword search greatly enhances system usability by returning the matching files; Fuzzy technique uses approximate full text search and retrieval. Three different Fuzzy Search Schemas, The wild card method, gram based method and tree traverse search scheme, are dicussed and also the efficiency of these algorithms is analyzed.


Author(s):  
Anita Chaudhari ◽  
Rajesh Bansode

In today’s world everyone is using cloud services. Every user uploads his/her sensitive data on cloud in encrypted form. If user wants to perform any type of computation on cloud data, user has to share credentials with cloud administrator. Which puts data privacy on risk. If user does not share his/her credentials with cloud provider, user has to download all data and only then decryption process and computation can be performed. This research, focuses on ECC based homomorphic encryption scheme is good by considering communication and computational cost. Many ECC based schemes are presented to provide data privacy. Analysis of different approaches has been done by selecting different common parameters. Based on the analysis minimum computation time is 0.25 Second required for ECC based homomorphic encryption (HE).


Sign in / Sign up

Export Citation Format

Share Document