Dental Pulp Stem Cells Promote Wound Healing and Muscle Regeneration

Author(s):  
E. Martínez-Sarrà ◽  
S. Montori ◽  
C. Gil-Recio ◽  
R. Núñez-Toldrà ◽  
N. Carrio Bertran ◽  
...  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Ester Martínez-Sarrà ◽  
Sheyla Montori ◽  
Carlos Gil-Recio ◽  
Raquel Núñez-Toldrà ◽  
Domiziana Costamagna ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6850
Author(s):  
Yuki Daigo ◽  
Erina Daigo ◽  
Hiroshi Fukuoka ◽  
Nobuko Fukuoka ◽  
Masatsugu Ishikawa ◽  
...  

High-intensity laser therapy (HILT) and photobiomodulation therapy (PBMT) are two types of laser treatment. According to recent clinical reports, PBMT promotes wound healing after trauma or surgery. In addition, basic research has revealed that cell differentiation, proliferation, and activity and subsequent tissue activation and wound healing can be promoted. However, many points remain unclear regarding the mechanisms for wound healing induced by PBMT. Therefore, in this review, we present an example from our study of HILT and PBMT irradiation of tooth extraction wounds using two types of lasers with different characteristics (diode laser and carbon dioxide laser). Then, the effects of PBMT on the wound healing of bone tissues are reviewed from histological, biochemical, and cytological perspectives on the basis of our own study of the extraction socket as well as studies by other researchers. Furthermore, we consider the feasibility of treatment in which PBMT irradiation is applied to stem cells including dental pulp stem cells, the theme of this Special Issue, and we discuss research that has been reported on its effect.


2017 ◽  
Vol 14 (7) ◽  
Author(s):  
Junjun Liu ◽  
Zhi Liu ◽  
Chunyan Wang ◽  
Fang Yu ◽  
Wenping Cai ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuko Nitahara-Kasahara ◽  
Mutsuki Kuraoka ◽  
Posadas Herrera Guillermo ◽  
Hiromi Hayashita-Kinoh ◽  
Yasunobu Maruoka ◽  
...  

Abstract Background Duchenne muscular dystrophy (DMD) is an inherited progressive disorder that causes skeletal and cardiac muscle deterioration with chronic inflammation. Dental pulp stem cells (DPSCs) are attractive candidates for cell-based strategies for DMD because of their immunosuppressive properties. Therefore, we hypothesized that systemic treatment with DPSCs might show therapeutic benefits as an anti-inflammatory therapy. Methods To investigate the potential benefits of DPSC transplantation for DMD, we examined disease progression in a DMD animal model, mdx mice, by comparing them with different systemic treatment conditions. The DPSC-treated model, a canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients, also underwent comprehensive analysis, including histopathological findings, muscle function, and locomotor activity. Results We demonstrated a therapeutic strategy for long-term functional recovery in DMD using repeated DPSC administration. DPSC-treated mdx mice and CXMDJ showed no serious adverse events. MRI findings and muscle histology suggested that DPSC treatment downregulated severe inflammation in DMD muscles and demonstrated a milder phenotype after DPSC treatment. DPSC-treated models showed increased recovery in grip-hand strength and improved tetanic force and home cage activity. Interestingly, maintenance of long-term running capability and stabilized cardiac function was also observed in 1-year-old DPSC-treated CXMDJ. Conclusions We developed a novel strategy for the safe and effective transplantation of DPSCs for DMD recovery, which included repeated systemic injection to regulate inflammation at a young age. This is the first report on the efficacy of a systemic DPSC treatment, from which we can propose that DPSCs may play an important role in delaying the DMD disease phenotype.


2021 ◽  
Vol 6 (9) ◽  
pp. 2742-2751
Author(s):  
Myung Chul Lee ◽  
Hoon Seonwoo ◽  
Kyoung Je Jang ◽  
Shambhavi Pandey ◽  
Jaewoon Lim ◽  
...  

2021 ◽  
Vol 400 (2) ◽  
pp. 112466
Author(s):  
J.F. Huo ◽  
M.L. Zhang ◽  
X.X. Wang ◽  
D.H. Zou

Sign in / Sign up

Export Citation Format

Share Document