Adenosine Receptors in Gestational Diabetes Mellitus and Maternal Obesity in Pregnancy

2018 ◽  
pp. 529-542
Author(s):  
Fabián Pardo ◽  
Luis Sobrevia
2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Andrea Leiva ◽  
Fabián Pardo ◽  
Marco A. Ramírez ◽  
Marcelo Farías ◽  
Paola Casanello ◽  
...  

Gestational diabetes mellitus (GDM) and obesity in pregnancy (OP) are pathological conditions associated with placenta vascular dysfunction coursing with metabolic changes at the fetoplacental microvascular and macrovascular endothelium. These alterations are seen as abnormal expression and activity of the cationic amino acid transporters and endothelial nitric oxide synthase isoform, that is, the “endothelial L-arginine/nitric oxide signalling pathway.” Several studies suggest that the endogenous nucleoside adenosine along with insulin, and potentially arginases, are factors involved in GDM-, but much less information regards their role in OP-associated placental vascular alterations. There is convincing evidence that GDM and OP prone placental endothelium to an “altered metabolic state” leading to fetal programming evidenced at birth, a phenomenon associated with future development of chronic diseases. In this paper it is suggested that this pathological state could be considered as a metabolic marker that could predict occurrence of diseases in adulthood, such as cardiovascular disease, obesity, diabetes mellitus (including gestational diabetes), and metabolic syndrome.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1412-P
Author(s):  
KATEřINA ANDERLOVÁ ◽  
PATRIK SIMJAK ◽  
ANNA CINKAJZLOVA ◽  
JANA KLOUCKOVA ◽  
HELENA KRATOCHVILOVA ◽  
...  

2020 ◽  
Vol 19 (2) ◽  
pp. 176-192
Author(s):  
Samantha Bedell ◽  
Janine Hutson ◽  
Barbra de Vrijer ◽  
Genevieve Eastabrook

: Obesity and gestational diabetes mellitus (GDM) are becoming more common among pregnant women worldwide and are individually associated with a number of placenta-mediated obstetric complications, including preeclampsia, macrosomia, intrauterine growth restriction and stillbirth. The placenta serves several functions throughout pregnancy and is the main exchange site for the transfer of nutrients and gas from mother to fetus. In pregnancies complicated by maternal obesity or GDM, the placenta is exposed to environmental changes, such as increased inflammation and oxidative stress, dyslipidemia, and altered hormone levels. These changes can affect placental development and function and lead to abnormal fetal growth and development as well as metabolic and cardiovascular abnormalities in the offspring. This review aims to summarize current knowledge on the effects of obesity and GDM on placental development and function. Understanding these processes is key in developing therapeutic interventions with the goal of mitigating these effects and preventing future cardiovascular and metabolic pathology in subsequent generations.


Chemosphere ◽  
2021 ◽  
Vol 271 ◽  
pp. 129828
Author(s):  
Wei-Jen Chen ◽  
Erin M. Davis ◽  
Julie A. Stoner ◽  
Candace Robledo ◽  
Jean R. Goodman ◽  
...  

Epigenomes ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 13
Author(s):  
Dennise Lizárraga ◽  
Alejandra García-Gasca

Gestational diabetes mellitus (GDM) is a pregnancy complication first detected in the second or third trimester in women that did not show evident glucose intolerance or diabetes before gestation. In 2019, the International Diabetes Federation reported that 15.8% of live births were affected by hyperglycemia during pregnancy, of which 83.6% were due to gestational diabetes mellitus, 8.5% were due to diabetes first detected in pregnancy, and 7.9% were due to diabetes detected before pregnancy. GDM increases the susceptibility to developing chronic diseases for both the mother and the baby later in life. Under GDM conditions, the intrauterine environment becomes hyperglycemic, while also showing high concentrations of fatty acids and proinflammatory cytokines, producing morphological, structural, and molecular modifications in the placenta, affecting its function; these alterations may predispose the baby to disease in adult life. Molecular alterations include epigenetic mechanisms such as DNA and RNA methylation, chromatin remodeling, histone modifications, and expression of noncoding RNAs (ncRNAs). The placenta is a unique organ that originates only in pregnancy, and its main function is communication between the mother and the fetus, ensuring healthy development. Thus, this review provides up-to-date information regarding two of the best-documented (epigenetic) mechanisms (DNA methylation and miRNA expression) altered in the human placenta under GDM conditions, as well as potential implications for the offspring.


Sign in / Sign up

Export Citation Format

Share Document