epigenetic mechanisms
Recently Published Documents


TOTAL DOCUMENTS

1772
(FIVE YEARS 565)

H-INDEX

89
(FIVE YEARS 13)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 170
Author(s):  
Linh Ho ◽  
Nazir Hossen ◽  
Trieu Nguyen ◽  
Au Vo ◽  
Fakhrul Ahsan

Pulmonary arterial hypertension (PAH) is a disease that progress over time and is defined as an increase in pulmonary arterial pressure and pulmonary vascular resistance that frequently leads to right-ventricular (RV) failure and death. Epigenetic modifications comprising DNA methylation, histone remodeling, and noncoding RNAs (ncRNAs) have been established to govern chromatin structure and transcriptional responses in various cell types during disease development. However, dysregulation of these epigenetic mechanisms has not yet been explored in detail in the pathology of pulmonary arterial hypertension and its progression with vascular remodeling and right-heart failure (RHF). Targeting epigenetic regulators including histone methylation, acetylation, or miRNAs offers many possible candidates for drug discovery and will no doubt be a tempting area to explore for PAH therapies. This review focuses on studies in epigenetic mechanisms including the writers, the readers, and the erasers of epigenetic marks and targeting epigenetic regulators or modifiers for treatment of PAH and its complications described as RHF. Data analyses from experimental cell models and animal induced PAH models have demonstrated that significant changes in the expression levels of multiple epigenetics modifiers such as HDMs, HDACs, sirtuins (Sirt1 and Sirt3), and BRD4 correlate strongly with proliferation, apoptosis, inflammation, and fibrosis linked to the pathological vascular remodeling during PAH development. The reversible characteristics of protein methylation and acetylation can be applied for exploring small-molecule modulators such as valproic acid (HDAC inhibitor) or resveratrol (Sirt1 activator) in different preclinical models for treatment of diseases including PAH and RHF. This review also presents to the readers the application of microfluidic devices to study sex differences in PAH pathophysiology, as well as for epigenetic analysis.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 251
Author(s):  
Matin Miryeganeh

Senescence is a major developmental transition in plants that requires a massive reprogramming of gene expression and includes various layers of regulations. Senescence is either an age-dependent or a stress-induced process, and is under the control of complex regulatory networks that interact with each other. It has been shown that besides genetic reprogramming, which is an important aspect of plant senescence, transcription factors and higher-level mechanisms, such as epigenetic and small RNA-mediated regulators, are also key factors of senescence-related genes. Epigenetic mechanisms are an important layer of this multilevel regulatory system that change the activity of transcription factors (TFs) and play an important role in modulating the expression of senescence-related gene. They include chromatin remodeling, DNA methylation, histone modification, and the RNA-mediated control of transcription factors and genes. This review provides an overview of the known epigenetic regulation of plant senescence, which has mostly been studied in the form of leaf senescence, and it also covers what has been reported about whole-plant senescence.


2022 ◽  
Vol 11 (6) ◽  
pp. 685-689
Author(s):  
Abdi Meriem ◽  
Zemani-Fodil Faouzia

Hemophilia A (HA) is the most severe X-linked inherited bleeding disorder caused by hemizygous mutations in the F8 gene. Several F8 mutations are responsible of HA including intron 1 and 22 micro-inversions, large and small deletions, insertions, duplications, and point mutations. In a previous study, we determined the molecular causes of HA in 85% of patients group studied. However, no mutation were found in three unrelated patients origi-nating from Western Algeria. In the present study, we sought to characterize the molecular origin of HA in three patients by investigating rearrangements in the F8 gene using the MLPA method. Comparaison between case results and healthy controls showed absence of deletions or duplications in the F8 gene in these three hemophiliacs A patients. This finding has already been reported in many studies where any F8 mutation or rearrangement has been identified. Further analysis are required in order to determine the molecular origin of the disease in these families. It would be very interesting to look for deep intonic mutations and to study epigenetic mechanisms as well as DNA methylation and miRNAs.


2022 ◽  
pp. 1-38
Author(s):  
Loutfy H. Madkour

2022 ◽  
Vol 15 (1) ◽  
pp. 80
Author(s):  
Ehab Ghazy ◽  
Mohamed Abdelsalam ◽  
Dina Robaa ◽  
Raymond J. Pierce ◽  
Wolfgang Sippl

Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. Schistosomes display morphologically distinct stages during their life cycle and the transformations between stages are controlled by epigenetic mechanisms. The targeting of epigenetic actors might therefore represent the parasites’ Achilles’ heel. Specifically, histone deacetylases have been recently characterized as drug targets for the treatment of schistosomiasis. This review focuses on the recent development of inhibitors for schistosome histone deacetylases. In particular, advances in the development of inhibitors of Schistosoma mansoni histone deacetylase 8 have indicated that targeting this enzyme is a promising approach for the treatment of this infection.


Author(s):  
Olimpia Mora-Janiszewska ◽  
Anna Faryniak-Zuzak ◽  
Dorota Darmochwał-Kolarz

Gestational diabetes (GDM) is considered a significant and increasing problem worldwide. The growing body of evidence points out that a hostile intrauterine environment in mothers with GDM via epigenetic mechanisms induces "diabetogenic" and "obesogenic" changes in an offspring's DNA. This sets in motion a vicious intergenerational cycle of metabolic diseases gradually deteriorating the health of the human population. One of the most important players in this process seems to be altered microbiota/microbiome. There is a chance that the identification of specific epigenetic marks may provide a key for future diagnostic, prognostic and therapeutic solutions/measures in the field of person-alized medicine. Given the reversibility of most epigenetic changes, an opportunity arises to improve the long-term health of the human population/race. In this manuscript, we aim to summarize available data on epigenetic changes among women suffering from GDM and their progeny in association with changes in microbiome.


2022 ◽  
pp. 108440
Author(s):  
Vinodh Balendran ◽  
K. Elaine Ritter ◽  
Donna M. Martin

2021 ◽  
Vol 23 (1) ◽  
pp. 421
Author(s):  
Consuelo Arias ◽  
Luis A. Salazar

Autophagy is an intracellular mechanism that maintains cellular homeostasis in different tissues. This process declines in cartilage due to aging, which is correlated with osteoarthritis (OA), a multifactorial and degenerative joint disease. Several studies show that microRNAs regulate different steps of autophagy but only a few of them participate in OA. Therefore, epigenetic modifications could represent a therapeutic opportunity during the development of OA. Besides, polyphenols are bioactive components with great potential to counteract diseases, which could reverse altered epigenetic regulation and modify autophagy in cartilage. This review aims to analyze epigenetic mechanisms that are currently associated with autophagy in OA, and to evaluate whether polyphenols are used to reverse the epigenetic alterations generated by aging in the autophagy pathway.


2021 ◽  
Vol 23 (1) ◽  
pp. 288
Author(s):  
Alkeiver S. Cannon ◽  
Prakash S. Nagarkatti ◽  
Mitzi Nagarkatti

For decades, activation of Aryl Hydrocarbon Receptor (AhR) was excluded from consideration as a therapeutic approach due to the potential toxic effects of AhR ligands and the induction of the cytochrome P450 enzyme, Cyp1a1, following AhR activation. However, it is now understood that AhR activation not only serves as an environmental sensor that regulates the effects of environmental toxins, but also as a key immunomodulator where ligands induce a variety of cellular and epigenetic mechanisms to attenuate inflammation. Thus, the emergence of further in-depth research into diverse groups of compounds capable of activating this receptor has prompted reconsideration of its use therapeutically. The aim of this review is to summarize the body of research surrounding AhR and its role in regulating inflammation. Specifically, evidence supporting the potential of targeting this receptor to modulate the immune response in inflammatory and autoimmune diseases will be highlighted. Additionally, the opportunities and challenges of developing AhR-based therapies to suppress inflammation will be discussed.


Sign in / Sign up

Export Citation Format

Share Document