DeepAD: A Generic Framework Based on Deep Learning for Time Series Anomaly Detection

Author(s):  
Teodora Sandra Buda ◽  
Bora Caglayan ◽  
Haytham Assem
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 120043-120065
Author(s):  
Kukjin Choi ◽  
Jihun Yi ◽  
Changhwa Park ◽  
Sungroh Yoon

2019 ◽  
Vol 38 ◽  
pp. 233-240 ◽  
Author(s):  
Mattia Carletti ◽  
Chiara Masiero ◽  
Alessandro Beghi ◽  
Gian Antonio Susto

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 1991-2005 ◽  
Author(s):  
Mohsin Munir ◽  
Shoaib Ahmed Siddiqui ◽  
Andreas Dengel ◽  
Sheraz Ahmed

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1466
Author(s):  
Kamil Faber ◽  
Marcin Pietron ◽  
Dominik Zurek

Multivariate time series anomaly detection is a widespread problem in the field of failure prevention. Fast prevention means lower repair costs and losses. The amount of sensors in novel industry systems makes the anomaly detection process quite difficult for humans. Algorithms that automate the process of detecting anomalies are crucial in modern failure prevention systems. Therefore, many machine learning models have been designed to address this problem. Mostly, they are autoencoder-based architectures with some generative adversarial elements. This work shows a framework that incorporates neuroevolution methods to boost the anomaly detection scores of new and already known models. The presented approach adapts evolution strategies for evolving an ensemble model, in which every single model works on a subgroup of data sensors. The next goal of neuroevolution is to optimize the architecture and hyperparameters such as the window size, the number of layers, and the layer depths. The proposed framework shows that it is possible to boost most anomaly detection deep learning models in a reasonable time and a fully automated mode. We ran tests on the SWAT and WADI datasets. To the best of our knowledge, this is the first approach in which an ensemble deep learning anomaly detection model is built in a fully automatic way using a neuroevolution strategy.


2021 ◽  
Author(s):  
Menaa Nawaz ◽  
Jameel Ahmed

Abstract Physiological signals retrieve information from sensors implanted or attached to the human body. These signals are vital data sources that can assist in predicting the disease well before time; thus, proper treatment can be made possible. With the addition of the Internet of Things in healthcare, real-time data collection and preprocessing for signal analysis has reduced the burden of in-person appointments and decision making on healthcare. Recently, deep learning-based algorithms have been implemented by researchers for the recognition, realization and prediction of diseases by extracting and analyzing important features. In this research, real-time 1-D time series data of on-body noninvasive biomedical sensors were acquired, preprocessed and analysed for anomaly detection. Feature engineered parameters of large and diverse datasets have been used to train the data to make the anomaly detection system more reliable. For comprehensive real-time monitoring, the implemented system uses wavelet time scattering features for classification and a deep learning-based autoencoder for anomaly detection of time series signals to assist the clinical diagnosis of cardiovascular and muscular activity. In this research, an implementation of an IoT-based AI-edge healthcare framework using biomedical sensors was presented. This paper also aims to analyse cloud data acquired through biomedical sensors using signal analysis techniques for anomaly detection, and time series classification has been performed for disease prognosis in real time by implementing 24 AI-based techniques to find the most accurate technique for real-time raw signals. The deep learning-based LSTM method based on wavelet time scattering feature extraction has shown a classification test accuracy of 100%. Using wavelet time scattering feature extraction achieved 95% signal reduction to increase the real-time processing speed. In real-time signal anomaly detection, 98% accuracy is achieved using LSTM autoencoders. The average mean absolute error loss of 0.0072 for normal signals and 0.078 is achieved for anomalous signals.


Author(s):  
Qingsong Wen ◽  
Liang Sun ◽  
Fan Yang ◽  
Xiaomin Song ◽  
Jingkun Gao ◽  
...  

Deep learning performs remarkably well on many time series analysis tasks recently. The superior performance of deep neural networks relies heavily on a large number of training data to avoid overfitting. However, the labeled data of many real-world time series applications may be limited such as classification in medical time series and anomaly detection in AIOps. As an effective way to enhance the size and quality of the training data, data augmentation is crucial to the successful application of deep learning models on time series data. In this paper, we systematically review different data augmentation methods for time series. We propose a taxonomy for the reviewed methods, and then provide a structured review for these methods by highlighting their strengths and limitations. We also empirically compare different data augmentation methods for different tasks including time series classification, anomaly detection, and forecasting. Finally, we discuss and highlight five future directions to provide useful research guidance.


2021 ◽  
Vol 11 (15) ◽  
pp. 6698
Author(s):  
Jehn-Ruey Jiang ◽  
Jian-Bin Kao ◽  
Yu-Lin Li

Thanks to the advance of novel technologies, such as sensors and Internet of Things (IoT) technologies, big amounts of data are continuously gathered over time, resulting in a variety of time series. A semi-supervised anomaly detection framework, called Tri-CAD, for univariate time series is proposed in this paper. Based on the Pearson product-moment correlation coefficient and Dickey–Fuller test, time series are first categorized into three classes: (i) periodic, (ii) stationary, and (iii) non-periodic and non-stationary time series. Afterwards, different mechanisms using statistics, wavelet transform, and deep learning autoencoder concepts are applied to different classes of time series for detecting anomalies. The performance of the proposed Tri-CAD framework is evaluated by experiments using three Numenta anomaly benchmark (NAB) datasets. The performance of Tri-CAD is compared with those of related methods, such as STL, SARIMA, LSTM, LSTM with STL, and ADSaS. The comparison results show that Tri-CAD outperforms the others in terms of the precision, recall, and F1-score.


Sign in / Sign up

Export Citation Format

Share Document