Detection and Tracking of Moving Objects for Indoor Mobile Robots with a Low-Cost Laser Scanner

Author(s):  
Tianyu Liu ◽  
Ye Gu ◽  
Weihua Sheng ◽  
Yongqiang Li ◽  
Yongsheng Ou
Author(s):  
Jorge L. Martinez ◽  
Jesus Morales ◽  
Antonio J. Reina ◽  
Anthony Mandow ◽  
Alejandro Pequeno-Boter ◽  
...  

Machines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 29
Author(s):  
Andrea Botta ◽  
Giuseppe Quaglia

This paper proposes a reliable and straightforward approach to mobile robots (or moving objects in general) indoor tracking, in order to perform a preliminary study on their dynamics. The main features of this approach are its minimal and low-cost setup and a user-friendly interpretation of the data generated by the ArUco library. By using a commonly available camera, such as a smartphone one or a webcam, and at least one marker for each object that has to be tracked, it is possible to estimate the pose of these markers, with respect to a reference conveniently placed in the environment, in order to produce results that are easily interpretable by a user. This paper presents a simple extension to the ArUco library to generate such user-friendly data, and it provides a performance analysis of this application with static and moving objects, using a smartphone camera to highlight the most notable feature of this solution, but also its limitations.


Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Majid Yekkehfallah ◽  
Ming Yang ◽  
Zhiao Cai ◽  
Liang Li ◽  
Chuanxiang Wang

SUMMARY Localization based on visual natural landmarks is one of the state-of-the-art localization methods for automated vehicles that is, however, limited in fast motion and low-texture environments, which can lead to failure. This paper proposes an approach to solve these limitations with an extended Kalman filter (EKF) based on a state estimation algorithm that fuses information from a low-cost MEMS Inertial Measurement Unit and a Time-of-Flight camera. We demonstrate our results in an indoor environment. We show that the proposed approach does not require any global reflective landmark for localization and is fast, accurate, and easy to use with mobile robots.


2014 ◽  
Vol 533 ◽  
pp. 218-225 ◽  
Author(s):  
Rapee Krerngkamjornkit ◽  
Milan Simic

This paper describes computer vision algorithms for detection, identification, and tracking of moving objects in a video file. The problem of multiple object tracking can be divided into two parts; detecting moving objects in each frame and associating the detections corresponding to the same object over time. The detection of moving objects uses a background subtraction algorithm based on Gaussian mixture models. The motion of each track is estimated by a Kalman filter. The video tracking algorithm was successfully tested using the BIWI walking pedestrians datasets [. The experimental results show that system can operate in real time and successfully detect, track and identify multiple targets in the presence of partial occlusion.


2015 ◽  
Vol 734 ◽  
pp. 203-206
Author(s):  
En Zeng Dong ◽  
Sheng Xu Yan ◽  
Kui Xiang Wei

In order to enhance the rapidity and the accuracy of moving target detection and tracking, and improve the speed of the algorithm on the DSP (digital signal processor), an active visual tracking system was designed based on the gaussian mixture background model and Meanshift algorithm on DM6437. The system use the VLIB library developed by TI, and through the method of gaussian mixture background model to detect the moving objects and use the Meanshift tracking algorithm based on color features to track the target in RGB space. Finally, the system is tested on the hardware platform, and the system is verified to be quickness and accuracy.


Sign in / Sign up

Export Citation Format

Share Document