A Trust-Based Prediction Approach for Recommendation System

Author(s):  
Peng Wang ◽  
Haiping Huang ◽  
Jie Zhu ◽  
Lingtao Qi

The spread over of huge amount of information in the vast area of internet makes difficult for the users to obtain the search items that are relevant to them. The adoption of web usage mining helps to discover the accurate search results that satisfy their requirements. To fulfill their need, it is necessary to know their preferences of search at various contexts. In general, the user profiles are used to determine the taste of the users. The traditional method of user profiling does not provide a complete detail regarding their search. In addition, the search preference of the individuals varies in accordance with time and location. The user profiles do not update the dynamic location changes of the users. The traditional location based recommendation systems suggest the search results based on their location to compensate the dynamic preferences of the users. The drawbacks of the conventional systems are resolved by the Location and User Profile (LUP) based recommendation system. To attain a higher user satisfaction by providing accurate search results, a trajectory based location prediction and enriched ontological user profiles to recommend the appropriate websites to the users is proposed in this paper. In this article, we suggest a novel method for predicting the location of a user's profile using Semantic Trajectory Pattern (STP), based on both the place and semantic features of user trajectories. Our prediction model 's central concept is based on a novel cluster-based prediction approach that evaluates the location of user search data based on the regular activities of related users in the same cluster, calculated by evaluating the typical behavior of users in semantic trajectories. The combination of location information along with enriched ontological user profiles improves the efficiency of the proposed web recommendation system. The experimental results are evaluated using recall, precision and F-measure metrics.


Author(s):  
Htay Htay Win ◽  
Aye Thida Myint ◽  
Mi Cho Cho

For years, achievements and discoveries made by researcher are made aware through research papers published in appropriate journals or conferences. Many a time, established s researcher and mainly new user are caught up in the predicament of choosing an appropriate conference to get their work all the time. Every scienti?c conference and journal is inclined towards a particular ?eld of research and there is a extensive group of them for any particular ?eld. Choosing an appropriate venue is needed as it helps in reaching out to the right listener and also to further one’s chance of getting their paper published. In this work, we address the problem of recommending appropriate conferences to the authors to increase their chances of receipt. We present three di?erent approaches for the same involving the use of social network of the authors and the content of the paper in the settings of dimensionality reduction and topic modelling. In all these approaches, we apply Correspondence Analysis (CA) to obtain appropriate relationships between the entities in question, such as conferences and papers. Our models show hopeful results when compared with existing methods such as content-based ?ltering, collaborative ?ltering and hybrid ?ltering.


2010 ◽  
Vol 130 (2) ◽  
pp. 317-323
Author(s):  
Masakazu Takahashi ◽  
Takashi Yamada ◽  
Kazuhiko Tsuda ◽  
Takao Terano

2020 ◽  
Vol 16 (7) ◽  
pp. 1095
Author(s):  
Gao Yuan ◽  
Zhang Youchun ◽  
Lu Wenpen ◽  
Luo Jie ◽  
Hao Daqing

2020 ◽  
Author(s):  
Nathaniel Park ◽  
Dmitry Yu. Zubarev ◽  
James L. Hedrick ◽  
Vivien Kiyek ◽  
Christiaan Corbet ◽  
...  

The convergence of artificial intelligence and machine learning with material science holds significant promise to rapidly accelerate development timelines of new high-performance polymeric materials. Within this context, we report an inverse design strategy for polycarbonate and polyester discovery based on a recommendation system that proposes polymerization experiments that are likely to produce materials with targeted properties. Following recommendations of the system driven by the historical ring-opening polymerization results, we carried out experiments targeting specific ranges of monomer conversion and dispersity of the polymers obtained from cyclic lactones and carbonates. The results of the experiments were in close agreement with the recommendation targets with few false negatives or positives obtained for each class.<br>


Sign in / Sign up

Export Citation Format

Share Document