Ventilation Effectiveness of Residential Ventilation Systems and Its Energy-Saving Potential

Author(s):  
Mohammad Reza Adili ◽  
Michael Schmidt
2018 ◽  
Vol 8 (11) ◽  
pp. 2328 ◽  
Author(s):  
Lian Zhang ◽  
Zijian Chen ◽  
Lijuan Wang

A solar dedicated ventilation system based on active disturbance rejection controller (ADRC) has been designed in this study and tested by experimental research to acquire better control accuracy and energy-saving potential compared with former systems. This system involves photovoltaic, solar thermal, and dedicated ventilation systems and ADRC. The solar energy replaces traditional energy to realize energy-saving potential, and ADRC takes the place of a conventional controller to gain control accuracy. The experimental results show that the temperature standard deviation is from 0.09 to 0.15 °C and difference between maximum and minimum is 0.33 to 0.49 °C (<0.5 °C) at different outdoor conditions to meet accurate control requirements. The results also show the energy-saving potential of the solar dedicated ventilation system as being equal to the power consumption of traditional systems, not including extreme situations. The solar dedicated ventilation system was used for actual operation of the cooling system of a laboratory precisely and efficiently. Consequently, the solar dedicated ventilation system based on ADRC is most suitable for hot and humid places to achieve the energy-saving objective.


2016 ◽  
Vol 861 ◽  
pp. 417-424 ◽  
Author(s):  
Michal Krajčík ◽  
Lucia Kudiváni ◽  
Ardeshir Mahdavi

Mixing and displacement air distribution are the main ventilation principles applied in both residential and non-residential buildings. Recently, personalized ventilation when the fresh air is delivered directly to the occupants at a high ventilation effectiveness has become an alternative. Despite of this fact, little research has been carried out to quantify the energy saving potential of personalized ventilation. This study aimed to quantify the effect of ventilation effectiveness and control strategy on the energy performance and thermal comfort for an open plan office equipped by different types of ventilation systems, including mixing ventilation with constant air volume, demand control ventilation and personalized ventilation. A model was created in a program for dynamic energy simulations TRNSYS, representing one floor of a typical office building divided into four zones with different orientations and a core. Space heating and cooling were provided by ceiling fancoil units recirculating the room air, thus the tasks of ventilation and air conditioning were provided by two separate systems. The potential of personalized ventilation to save energy for fans and for the heating coil of the ventilation system presented about 70% compared to constant air volume mixing ventilation, however, the overall saving was only 20% when also the energy demand for space heating was considered. The energy benefit of demand control ventilation and personalized ventilation depends on the energy need for space heating and cooling, system configuration and operation, and occupancy.


Sign in / Sign up

Export Citation Format

Share Document