displacement ventilation
Recently Published Documents


TOTAL DOCUMENTS

333
(FIVE YEARS 67)

H-INDEX

33
(FIVE YEARS 5)

Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Zouhira Hireche ◽  
Nabil Himrane ◽  
Lyes Nasseri ◽  
Yasmine Hamrioui ◽  
Djamel Eddine Ameziani

This article demonstrates the feasibility of porous separation on the performance of displacement ventilation in a rectangular enclosure. A jet of fresh air enters the cavity through an opening at the bottom of the left wall and exits through an opening at the top of the right wall. The porous separation is placed in the center of the cavity and its height varies between 0.2 and 0.8 with three values of thickness, 0.1, 0.2, and 0.3. The heat transfer rate was calculated for different intervals of Darcy (10−6 ≤ Da ≤ 10), Rayleigh (10 ≤ Ra ≤ 106), and Reynolds (50 ≤ Re ≤ 500) numbers. The momentum and the energy equations were solved by the lattice Boltzmann method with multiple relaxation times (LB-MRT). Schemes D2Q9 and D2Q5 were chosen for the velocity and temperature fields, respectively. For porous separation, the generalized Darcy–Brinkman–Forchheimer model was adopted. It is represented by a term added in the standard LB equations. For the dynamic domain, numerical simulations revealed complex flow structures depending on all control parameters. The results showed that the thermal field, mainly in the second compartment, is very dependent on the size and permeability of the porous separation. However, they have no influence on the transfer rate.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 625
Author(s):  
Hao-Hsiang Hsu ◽  
Wei-Hwa Chiang ◽  
Jian-Sheng Huang

This study involved a series of computational fluid dynamics simulations to evaluate the effectiveness of stack and displacement ventilation in providing better thermal comfort in an air-conditioned office building. To reduce energy consumption, the public area of the studied building is cooled by air from air-conditioned rooms with lower temperatures. The air, which is driven by buoyancy, then, flows outside through the multistory atrium. The simulation results indicated that displacement ventilation provides superior thermal comfort performance relative to stack ventilation. A design with a higher ceiling, a higher heat source and a lower inlet with cold air can substantially enhance the efficiency of displacement ventilation. Furthermore, handrails near the atrium play a crucial role because they help to retain cold air in the public space for a longer period, thereby contributing to a better predicted mean vote value.


2021 ◽  
Vol 932 ◽  
Author(s):  
Rui Yang ◽  
Chong Shen Ng ◽  
Kai Leong Chong ◽  
Roberto Verzicco ◽  
Detlef Lohse

Indoor ventilation is essential for a healthy and comfortable living environment. A key issue is to discharge anthropogenic air contamination such as CO $_2$ gas or, of potentially more direct consequence, airborne respiratory droplets. Here, by employing direct numerical simulations, we study mechanical displacement ventilation with a wide range of ventilation rates $Q$ from 0.01 to 0.1 m $^3$ s $^{-1}$ person $^{-1}$ . For this ventilation scheme, a cool lower zone is established beneath a warm upper zone with interface height $h$ , which depends on $Q$ . For weak ventilation, we find the scaling relation $h\sim Q^{3/5}$ , as suggested by Hunt & Linden (Build. Environ., vol. 34, 1999, pp. 707–720). Also, the CO $_{2}$ concentration decreases with $Q$ within this regime. However, for too strong ventilation, the interface height $h$ becomes insensitive to $Q$ , and the ambient averaged CO $_2$ concentration decreases towards the ambient value. At these values of $Q$ , the concentrations of pollutants are very low and so further dilution has little effect. We suggest that such scenarios arise when the vertical kinetic energy associated with the ventilation flow is significant compared with the potential energy of the thermal stratification.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012096
Author(s):  
Wenyu Lin ◽  
Tao Zhang ◽  
Xiaohua Liu ◽  
Lingshan Li

Abstract It is important to strictly maintain the indoor thermal environment in ice arenas which have very different features to other commercial buildings. Separated air distribution system is widely used to create a dry and cold environment near the ice and a comfortable environment in the view stand. The warm and humid air from the view stand may lead to uneven temperature and humidity distribution in the rink, leading to extra energy consumption, even fog and frost on the ice. Unreasonable air supply in the ice rink zone will also make the spectators feel too cold and uncomfortable. Jet ventilation system is the most extensively used system in the ice rink zone. An innovative ground displacement ventilation system is proposed in the National Aquatics Centre, which will serve as the venue for the curling competition in the 2022 Beijing Winter Olympics. On-site measurement in the arena is carried out and computational fluid dynamics (CFD) simulation method is adopted in the present research. Measured thermal environment above the ice with different ventilation systems are compared and analysed. Result shows that the displacement ventilation system features a more obvious vertical stratification than jet ventilation system in this kind of large space buildings, and thus is more energy-efficient. A CFD model of the ice cube is setup and verified by measured data. The thermal environment in the ice rink with displacement ventilation under extreme condition is studied using the simulation method. The temperature and humidity in the ice field increases by 10.1 °C, 4.5 g/kg without air supply in the view stand, proving that the spectators in the view stand have a great impact on the thermal environment in the ice field.


2021 ◽  
Vol 9 (ICRIE) ◽  
Author(s):  
Ali Aedan Shbeeb ◽  
◽  
Ala'a Abbas Mahdi ◽  
Ahmed Kadhim Hussein ◽  
◽  
...  

This study aims to investigate the effect of the cooling load ratio covered by the chilled ceiling on the age of air and comfort level in a classroom in a hot and dry climate in Iraq-Hilla city. Air age, air exchange efficiency, and concentrations of pollutants in a classroom are investigated numerically by used AIRPAK software under displacement ventilation combined with a chilled ceiling system. Four cases are studied at different values of the cooling load covered by the chilled ceiling (0%, 25%, 50%, 80%) with respect to total classroom cooling load. Cooling load removes by chilled ceiling varied from (0 to 84.5 W/m2) based on the classroom area, and its temperature varied between (17.5-22.5oC). The displacement ventilation airflow rate was kept at 0.3m3/s, and the air temperature supply varied between (19.5-24.5oC) depend on the amount of cooling load covered by displacement ventilation. The results showed that the mean local air age increasing with height. The room mean air age increase and air exchange efficiency reduce with increasing load portion, which treated by the chilled ceiling. Increasing the portion of the load treated by chilled ceiling tends to improve comfort levels.


Sign in / Sign up

Export Citation Format

Share Document