Sampling Wild Species to Conserve Genetic Diversity

Author(s):  
Sean Hoban ◽  
Gayle Volk ◽  
Kanin J. Routson ◽  
Christina Walters ◽  
Chris Richards
2020 ◽  
Vol 24 (5) ◽  
pp. 474-480
Author(s):  
I. I. Suprun ◽  
S. A. Plugatar ◽  
I. V. Stepanov ◽  
T. S. Naumenko

In connection with the development of breeding and the creation of new plant varieties, the problem of their genotyping and identification is becoming increasingly important, therefore the use of molecular methods to identify genetic originality and assess plant genetic diversity appears to be relevant. As part of the work performed, informative ISSR and IRAP DNA markers promising for the study of genetic diversity of the Rosa L. genus were sought and applied to analysis of genetic relationships among 26 accessions of the genus Rosa L. from the gene pool collection of Nikita Botanical Gardens. They included 18 cultivated varieties and 8 accessions of wild species. The species sample included representatives of two subgenera, Rosa and Platyrhodon. The subgenus Platyrhodon was represented by one accession of the species R. roxburghii Tratt. Cultivated roses were represented by varieties of garden groups hybrid tea, floribunda, and grandiflora. The tested markers included 32 ISSRs and 13 IRAPs. Five ISSR markers (UBC 824, ASSR29, 3A21, UBC 864, and UBC 843) and three IRAPs (TDK 2R, Сass1, and Сass2) were chosen as the most promising. They were used for genotyping the studied sample of genotypes. In general, they appeared to be suitable for further use in studying the genetic diversity of the genus Rosa L. The numbers of polymorphic fragments ranged from 12 to 31, averaging 19.25 fragments per marker. For markers UBC 864 and UBC 843, unique fingerprints were identified in each accession studied. The genetic relationships of the studied species and varieties of roses analyzed by the UPGMA, PCoA, and Bayesian methods performed on the basis of IRAP and ISSR genotyping are consistent with their taxonomic positions. The genotype of the species R. roxburghii of the subgenus Platyrhodon was determined genetically as the most distant. According to clustering methods, the representative of the species R. bengalensis did not stand out from the group of cultivated varieties. When assessing the level of genetic similarity among the cultivated varieties of garden roses, the most genetically isolated varieties were ‘Flamingo’, ‘Queen Elizabeth’, and ‘Kordes Sondermeldung’; for most of the other varieties, groups of the greatest genetic similarity were identified. This assessment reflects general trends in phylogenetic relationships, both among the studied species of the genus and among cultivated varieties.


2012 ◽  
Vol 54 (3-4) ◽  
pp. 391-408
Author(s):  
R. Safaa ◽  
B. Salwa ◽  
M. Mohammed ◽  
S. Reda

2010 ◽  
Vol 127 (1) ◽  
pp. 46-53 ◽  
Author(s):  
Biao Jiang ◽  
Zhi-Ming Wu ◽  
Qun-Feng Lou ◽  
Dong Wang ◽  
Wan-Ping Zhang ◽  
...  

Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 87
Author(s):  
Kumpei Shiragaki ◽  
Shuji Yokoi ◽  
Takahiro Tezuka

The genus Capsicum is comprised of 5 domesticated and more than 30 wild species. The region of nuclear ribosomal DNA internal transcribed spacers (rDNA-ITS) has widely been used for species identification, but has rarely been used in Capsicum. In this study, the evaluation of genetic diversity and a phylogenetic analysis were conducted using rDNA-ITS of 28 Capsicum accessions, including five domesticated and two wild species. We surveyed six conventional keys of domesticated species and another five traits in Capsicum accessions. Specific morphological characteristics were found in C. annuum, C. baccatum, and C.pubescens. Three subclones of each accession were sequenced, and rDNA-ITS polymorphisms were detected in all accessions excluding C. annuum, suggesting that incomplete concerted evolution occurred in rDNA-ITS of Capsicum. The genetic diversity was evaluated using nucleotide polymorphism and diversity. C. annuum had the lowest genetic diversity of all species in this study. The phylogenetic tree formed a species-specific clade for C. annuum, C. baccatum, and C. pubescens. The C. chinense clade existed in the C. frutescens clade, implying that it was a cultivated variant of C. frutescens. C. chacoense likely belonged to the C. baccatum complex according to its morphologic and genetic features. This study indicated that the rDNA-ITS region can be used for simple identification of domesticated Capsicum species.


2015 ◽  
Author(s):  
Eric J Fuchs ◽  
Allan Meneses Martínez ◽  
Amanda Calvo ◽  
Melania Muñoz ◽  
Griselda Arrieta-Espinoza

Wild crop relatives are an important source of genetic diversity for crop improvement. However, gene flow from cultivated species into wild species may prove detrimental. Introgression may lead to changes in wild species by incorporating alleles from domesticated species, which may increase the likelihood of extinction. The objective of the present study is to analyze how genetic diversity is distributed within and among populations of the wild rice species Oryza glumaepatula in Costa Rica. We also evaluated if there is evidence of introgression between wild rice and commercial varieties of O. sativa since it is cultivated commonly in close proximity to wild rice populations. Individuals from all known O. glumaepatula populations in Costa Rica were collected. With the aid of 455 AFLP markers, we characterized the genetic diversity and structure among seven populations in northern Costa Rica. Given the dominant nature of our markers, Bayesian estimates of genetic structure were used. We also compared genetic diversity estimates between O. glumaepatula individuals and O. sativa commercial rice. Our results show that O. glumaepatula populations in Costa Rica have moderately high levels of genetic diversity, comparable to those found in South American populations. This is likely a result of large population size. Despite the restricted distributions of this wild species, in Costa Rica most populations are composed of several thousand individuals, thus reducing the effects of drift on genetic diversity. Our results also found low but significant structure (\theta=0.03±0.001) among populations that are separated by ~10 Km within a single river. The position of the population along the river did not influence genetic diversity estimates or differences among populations. This river does not have a strong current and meadows or seeds may easily move upstream, thus homogenizing genetic diversity across populations regardless of river position. Ample gene flow through pollen, seeds or detached culms within the same river reduces genetic structure. A Bayesian structure analysis showed that individuals from two populations share a significant proportion of their genomes with O. sativa genome. These results suggest that the low levels of genetic structure found in these populations are likely the result of introgression from cultivated O. sativa populations. These results expose an important biohazard as recurrent hybridization may reduce genetic diversity of this wild rice species. Introgression may transfer commercial traits into the only populations of O. glumaepatula in Costa Rica, which in turn could alter genetic diversity and increase the likelihood of local extinction. These results have important implications for in situ conservation strategies of the only wild populations of O. glumaepatula in Costa Rica.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Yufang Guo ◽  
Ryan M. Warner

Abstract The cultivated petunia (Petunia ×hybrida) is derived from the progenitor species P. axillaris and P. integrifolia. The hybridization dates back only to the 1830s, though intensive breeding efforts have yielded cultivars exhibiting incredible diversity for many traits, including growth habit, flower color, and flower size. Until now, little is known about the genetic diversity and genomic background of modern cultivars. Here we selected a panel of 13 cultivars with contrasting growth habits and three wild species (the progenitors and P. exserta) to estimate the genomic contribution from the ancestral species and to study whether the variation of the genetic origin could be associated with different breeding programs or morphological variability. Transcriptome sequencing identified 1,164,566 SNPs representing 98.4% (32,451) of the transcripts that cover 99.2% (of 52,697,361 bp) of the P. axillaris transcriptome. Cultivars with an upright growth habit had more homozygous alleles and more P. axillaris-derived alleles than trailing cultivars, while mounded cultivars had intermediate heterozygosity. Unlike previous studies, we found the proportions of alleles derived from each progenitor species varied across cultivars but overall were not biased toward one progenitor species, suggesting diverse selection during cultivar development. For trailing cultivars, alleles potentially introgressed from other wild species (“out” alleles) were enriched. The “out” alleles were clustered in particular regions of chromosomes, suggesting that these regions may be hotspots of introgression. Transcripts in these regions were enriched with gene ontology terms associated with growth habit. This study provides novel insight into the contributions of progenitor species to the genomic background of modern petunia cultivars and identifies genome regions that may harbor genes conferring the trailing growth habit for further exploration.


Sign in / Sign up

Export Citation Format

Share Document