genetic diversity and structure
Recently Published Documents


TOTAL DOCUMENTS

594
(FIVE YEARS 254)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Fanshu Gong ◽  
Yaping Geng ◽  
Pengfei Zhang ◽  
Feng Zhang ◽  
Xinfeng Fan ◽  
...  

Abstract Huangqi (Astragalus) is a versatile herb that possesses several therapeutic effects against a variety of diseases, especially lung diseases. The aim of this study was to establish a core collection of Astragalus germplasm resources based on molecular 10 SSR markers. Based on 380 samples of Astragalus collected from different areas, five different methods were utilized to construct the core collection of Astragalus, including PowerCore-based M strategy, CoreFinder-based M strategy, Core Hunter-based stepwise sampling, PowerMarker-based simulated annealing algorithm based on allele maximization, and PowerMarker-based simulated annealing algorithm based on maximizing genetic diversity. Of the constructed Astragalus core collections, the CoreFinder-based M strategy was found to be the most suitable approach as it reserved all the alleles and most of the genetic diversity parameters were higher than those of the initial collection. Additional analyses demonstrated that the genetic diversity of the core collection matched the properties of the initial collection. Further, the phylogenetic trees indicated that the population structure of the core collection was similar to that of the initial collection. In addition, our results showed that the optimal grouping value of K was 2. The construction of a core collection is beneficial for the understanding, management, and utilization of Astragalus. Moreover, this study will act as a valuable reference for constructing core collections for other plants or fungi.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hanli Dang ◽  
Tao Zhang ◽  
Yuanyuan Li ◽  
Guifang Li ◽  
Li Zhuang ◽  
...  

Glycyrrhiza uralensis is a valuable medicinal legume, which occurs widely in arid and semi-arid regions. G. uralensis demand has risen steeply due to its high medical and commercial value. Interpret genome-wide information can stimulate the G. uralensis development as far as its increased bioactive compound levels, and plant yield are concerned. In this study, leaf nutrient concentration and photosynthetic chlorophyll index of G. uralensis were evaluated to determine the G. uralensis growth physiology in three habitats. We observed that G. uralensis nutrient levels and photosynthesis differed significantly in three regions (p < 0.05). Whole-genome re-sequencing of the sixty G. uralensis populations samples from different habitats was performed using an Illumina HiSeq sequencing platform to elucidate the distribution patterns, population evolution, and genetic diversity of G. uralensis. 150.06 Gb high-quality clean data was obtained after strict filtering. The 895237686 reads were mapped against the reference genome, with an average 89.7% mapping rate and 87.02% average sample coverage rate. A total of 6985987 SNPs were identified, and 117970 high-quality SNPs were obtained after filtering, which were subjected to subsequent analysis. Principal component analysis (PCA) based on interindividual SNPs and phylogenetic analysis based on interindividual SNPs showed that the G. uralensis samples could be categorized into central, southern, and eastern populations, which reflected strong genetic differentiation due to long periods of geographic isolation. In this study, a total of 131 candidate regions were screened, and 145 candidate genes (such as Glyur001802s00036258, Glyur003702s00044485, Glyur001802s00036257, Glyur007364s00047495, Glyur000028s00003476, and Glyur000398s00034457) were identified by selective clearance analysis based on Fst and θπ values. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed significant enrichment of 110 GO terms including carbohydrate metabolic process, carbohydrate biosynthetic process, carbohydrate derivative biosynthetic process, and glucose catabolic process (p < 0.05). Alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, and fatty acid degradation pathways were significantly enriched (p < 0.05). This study provides information on the genetic diversity, genetic structure, and population adaptability of the medicinal legumes, G. uralensis. The data obtained in this study provide valuable information for plant development and future optimization of breeding programs for functional genes.


Zoo Biology ◽  
2021 ◽  
Author(s):  
Yuna Aoki ◽  
Yosuke Zaitsu ◽  
Masanori Kurita ◽  
Richard A. Phillips ◽  
Ryo Tadano

2021 ◽  
Vol 37 ◽  
pp. e37080
Author(s):  
Maria Fernanda Da Costa Gomes ◽  
Artemisa Nazaré Costa Borges ◽  
Giovana Sarah Sales Batista ◽  
Gizele De Andrade Luz ◽  
Maria Edileide Alencar Oliveira ◽  
...  

Cajui (Anacardium spp.) is a native fruit tree (small cashew) of the Brazilian Cerrado and possesses the potential for commercialization. However, cajui exploitation occurs exclusively through extractivism in the absence of conservation strategies. The lack of conservation strategies may lead to a decrease in genetic diversity of Anacardium. In this work, the genetic diversity and population structure of three natural populations in Sete Cidades National Park (PNSC; PI, Brazil) were assessed using ISSR analysis of 56 cajui accessions and two A. occidentale accessions (outgroup) from Pacajus (CE, Brazil). A total of 112 markers were obtained, 93 (83.04%) of which were polymorphic. The diversity indices of these populations indicated moderate levels of genetic diversity. According to AMOVA, 96.17% of the genetic variability lay within populations, with low genetic differentiation among populations (ΦST = 0.03828). Furthermore, STRUCTURE analysis indicated the existence of four connected genetic groups. The findings show that the individuals from the three collection sites did not represent different subpopulations, likely due to the high gene flow (Nm = 6.7) favored by the floral biology of Anacardium, pollinators and small-animal seed dispersers. This research identifies genetically divergent individuals (C-03, C-05, C-22, C-26, C-34 and C-39), which should be considered priority individuals for conservation and can inform conservation programs for Anacardium spp.


2021 ◽  
Author(s):  
Mauricio Rodríguez-Bardía ◽  
Eric J. Fuchs ◽  
Gilbert Barrantes ◽  
Ruth Madrigal-Brenes ◽  
Luis Sandoval

Abstract Gene flow in birds can be affected by urbanization depending on natural history traits and adaptability to habitat change. Contrasting results can be expected when comparing species with opposite resilience to urbanization. In this study, we assessed genetic diversity and structure for two bird species, the urban avoider white-eared ground-sparrow, Melozone leucotis, and the urban dweller house wren Troglodytes aedon. We used seven microsatellite loci and sampled five locations with differing levels of urbanization in Costa Rica. We found considerably higher genetic structure in white-eared ground-sparrows than in house wrens. Circuit theory analyses proved a higher isolation from urban resistance for the white-eared ground-sparrow than for house wrens. These results support that urbanization is a significant barrier for gene flow in urban avoiders, in contrast to urban dweller species that showed little to no impact. Differences could be attributed to a higher plasticity in habitat and nesting site preferences in the house wren, and significant dispersal limitation for the white-eared ground-sparrow. These results emphasize the need for conservation strategies towards white-eared ground-sparrows and other urban avoider species whose habitat and connectivity have been reduced by the recent urban expansion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sanjaya Gyawali ◽  
Gehendra Bhattarai ◽  
Ainong Shi ◽  
Chris Kik ◽  
Lindsey J. du Toit

Genotype-by-sequencing (GBS) was used to explore the genetic diversity and structure of Spinacia turkestanica, and the selective sweeps involved in domestication of cultivated spinach, S. oleracea, from S. turkestanica. A total 7,065 single nucleotide polymorphisms (SNPs) generated for 16 Spinacia oleracea and 76 S. turkestanica accessions placed the S. oleracea accessions in one group, Q1, and the 76 S. turkestanica accessions, which originated from Central Asia, in two distinct groups, Q2 and Q3. The Q2 group shared greater genetic identity with the S. oleracea accessions, Q1, than the Q3 S. turkestanica group. Likewise, the S. oleracea Q1 group had a smaller Fst (0.008) with the Q2 group than with the Q3 group (Fst = 0.012), and a greater gene flow (Nm = 30.13) with the Q2 group than with the Q3 group (Nm = 21.83). The Q2 accessions originated primarily from Uzbekistan while the Q3 accessions originated mostly from Tajikistan. The Zarafshan Mountain Range appears to have served as a physical barrier that largely separated members of the Q2 and Q3 groups of S. turkestanica. Accessions with admixtures of Q2 and Q3 were collected primarily from lower elevations at the southern end of the Zarafshan Mountain Range in Uzbekistan. Selective sweep regions identified at 32, 49, and 52 Mb on chromosomes 1, 2, and 3, respectively, appear to have played a vital role in the domestication of S. oleracea as they are correlated with important domestication traits, including day length sensitivity for bolting (flowering). High XP-CLR scores at the 52 Mb genomic region of chromosome three suggest that a selective sweep at this region was responsible for early differentiation of S. turkestanica into two groups in Central Asia.


Author(s):  
Juan Francisco Jiménez ◽  
Rubén Ramírez-Rodríguez ◽  
Manuel Melendo-Luque ◽  
Víctor N. Suárez-Santiago ◽  
Pedro Sánchez-Gómez

2021 ◽  
Author(s):  
Quentin Rougemont ◽  
Charles Perrier ◽  
Anne-Laure Besnard ◽  
Isabelle Lebel ◽  
Yann Abdallah ◽  
...  

AbstractDeciphering the effects of historical and recent demographic processes responsible for the spatial patterns of genetic diversity and structure is a key objective in evolutionary and conservation biology. Using genetic analyses, we investigated the demographic history, the contemporary genetic diversity and structure, and the occurrence of hybridization and introgression, of two species of anadromous fish with contrasted life history strategies and which have undergone recent demographic declines, the allis shad (Alosa alosa) and the twaite shad (Alosa fallax). We genotyped 706 individuals from 20 rivers and 5 sites at sea in Southern Europe at microsatellite markers. Genetic structure between populations was lower for the nearly semelparous species allis shad that disperse stronger distance compared to the iteroparous species, twaite shad. Individuals caught at sea were assigned at the river level for twaite shad and at the region level for allis shad. Using an approximate Bayesian computation framework, we inferred that the most likely long term historical divergence scenario between both species implicated historical separation followed by secondary contact accompanied by strong population size decline. Accordingly, we found evidence of contemporary hybridization and introgression between both species. Besides, our results support the existence of cryptic species in the Mediterranean sea. Overall, our results shed light on the interplay between historical and recent demographic processes and life history strategies in shaping population genetic diversity and structure of closely related species. The recent demographic decline of these species’ populations and their hybridization should be carefully considered while implementing conservation programs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tonka Ninčević ◽  
Marija Jug-Dujaković ◽  
Martina Grdiša ◽  
Zlatko Liber ◽  
Filip Varga ◽  
...  

AbstractImmortelle (Helichrysum italicum (Roth) G. Don; Asteraceae) is a perennial plant species native to the Mediterranean region, known for many properties with wide application mainly in perfume and cosmetic industry. A total of 18 wild H. italicum populations systematically sampled along the eastern Adriatic environmental gradient were studied using AFLP markers to determine genetic diversity and structure and to identify loci potentially responsible for adaptive divergence. Results showed higher levels of intrapopulation diversity than interpopulation diversity. Genetic differentiation among populations was significant but low, indicating extensive gene flow between populations. Bayesian analysis of population structure revealed the existence of two genetic clusters. Combining the results of FST - outlier analysis (Mcheza and BayeScan) and genome-environment association analysis (Samβada, LFMM) four AFLP loci strongly associated with the bioclimatic variables Bio03 Isothermality, Bio08 Mean temperature of the wettest quarter, Bio15 Precipitation seasonality, and Bio17 Precipitation of driest quarter were found to be the main variables driving potential adaptive genetic variation in H. italicum along the eastern Adriatic environmental gradient. Redundancy analysis revealed that the partitioning of genetic variation was mainly associated with the adaptation to temperature oscillations. The results of the research may contribute to a clearer understanding of the importance of local adaptations for the genetic differentiation of Mediterranean plants and allow the planning of appropriate conservation strategies. However, considering that the identified outlier loci may be linked to genes under selection rather than being the target of natural selection, future studies must aim at their additional analysis.


Sign in / Sign up

Export Citation Format

Share Document