Modeling the Transmission Path Effect in a Planetary Gearbox

Author(s):  
Oussama Graja ◽  
Bacem Zghal ◽  
Kajetan Dziedziech ◽  
Fakher Chaari ◽  
Adam Jablonski ◽  
...  
Author(s):  
Oussama Graja ◽  
Ahmed Ghorbel ◽  
Fakher Chaari ◽  
Mohamed Haddar

2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

2020 ◽  
Vol 101 ◽  
pp. 408-420 ◽  
Author(s):  
Junchao Guo ◽  
Dong Zhen ◽  
Haiyang Li ◽  
Zhanqun Shi ◽  
Fengshou Gu ◽  
...  

Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 38
Author(s):  
Franco Concli ◽  
Athanasios Kolios

Wind turbine gearboxes are known to be among the weakest components in the system and the possibility to study and understand the behavior of geared transmissions when subject to several types of faults might be useful to plan maintenance and eventually reduce the costs by preventing further damage. The aim of this work is to develop a high-fidelity numerical model of a single-stage planetary gearbox selected as representative and to evaluate its behavior in the presence of surface fatigue and tooth-root bending damage, i.e., pits and cracks. The planetary gearbox is almost entirely modelled, including shafts, gears as well as bearings with all the rolling elements. Stresses and strains in the most critical areas are analyzed to better evaluate if the presence of such damage can be somehow detected using strain gauges and where to place them to maximize the sensitivity of the measures to the damage. Several simulations with different levels, types and positions of the damage were performed to better understand the mutual relations between the damaged and the stress state. The ability to introduce the effect of the damage in the model of a gearbox represents the first indispensable step of a Structural Health Monitoring (SHM) strategy. The numerical activity was performed taking advantage of an innovative hybrid numerical–analytical approach that ensures a significant reduction of the computational effort. The developed model shows good sensitivity to the presence, type and position of the defects. For the studied configuration, the numerical results show clearly show a relation between the averaged rim stress and the presence of root cracks. Moreover, the presence of surface defects seems to produce local stress peaks (when the defects pass through the contact) in the instantaneous rim stress.


2021 ◽  
pp. 147592172110360
Author(s):  
Dongming Hou ◽  
Hongyuan Qi ◽  
Honglin Luo ◽  
Cuiping Wang ◽  
Jiangtian Yang

A wheel set bearing is an important supporting component of a high-speed train. Its quality and performance directly determine the overall safety of the train. Therefore, monitoring a wheel set bearing’s conditions for an early fault diagnosis is vital to ensure the safe operation of high-speed trains. However, the collected signals are often contaminated by environmental noise, transmission path, and signal attenuation because of the complexity of high-speed train systems and poor operation conditions, making it difficult to extract the early fault features of the wheel set bearing accurately. Vibration monitoring is most widely used for bearing fault diagnosis, with the acoustic emission (AE) technology emerging as a powerful tool. This article reports a comparison between vibration and AE technology in terms of their applicability for diagnosing naturally degraded wheel set bearings. In addition, a novel fault diagnosis method based on the optimized maximum second-order cyclostationarity blind deconvolution (CYCBD) and chirp Z-transform (CZT) is proposed to diagnose early composite fault defects in a wheel set bearing. The optimization CYCBD is adopted to enhance the fault-induced impact response and eliminate the interference of environmental noise, transmission path, and signal attenuation. CZT is used to improve the frequency resolution and match the fault features accurately under a limited data length condition. Moreover, the efficiency of the proposed method is verified by the simulated bearing signal and the real datasets. The results show that the proposed method is effective in the detection of wheel set bearing faults compared with the minimum entropy deconvolution (MED) and maximum correlated kurtosis deconvolution (MCKD) methods. This research is also the first to compare the effectiveness of applying AE and vibration technologies to diagnose a naturally degraded high-speed train bearing, particularly close to actual line operation conditions.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 52
Author(s):  
Tongtong Liu ◽  
Lingli Cui ◽  
Chao Zhang

The turn domain resampling (TDR) method is proposed in the paper on the basis of the existing angle domain resampling for solving the problem of non-fixed fault frequency under variable working conditions. TDR can select the appropriate sampling order according to the influence of frequency conversion, which avoided the error caused by the spline interpolation method. It can provide accurate parameters for the subsequent calculation of the equivalent frequency order. Variable multi-scale morphological filtering (VMSMF) method is proposed for the purpose of further reducing the interference of noise in resampling signal to feature extraction. VMSMF adaptively selects structural elements according to the parameter change of impact signal to make its scale more targeted. It only needs to calculate once using the optimal structural unit for a particular impact, and the filtering accuracy and operating efficiency have been greatly improved. The main steps of this article are as follows. First, the TDR is used to resample the original signal as to get the resampling signal which is still submerged by the strong noise. In the second step, VMSMF is used to filter the resampling signal to obtain the signal with less noise interference. Finally, the fault characteristics of the filtering signal was extracted and compared with the possible fault frequency calculated by the sampling parameters provided by resampling, so as to determine the fault type of the planetary gearbox. By analyzing the simulation signal and the experimental signal respectively, this method can find out the corresponding fault characteristics effectively.


1984 ◽  
Vol 14 (4) ◽  
pp. 143-147
Author(s):  
A. A. Friedrich ◽  
R. D. Love

Sign in / Sign up

Export Citation Format

Share Document