Android Application Analysis Using Machine Learning Techniques

Author(s):  
Takeshi Takahashi ◽  
Tao Ban

Cultivators and sellers of many high-in-demand fruits traditionally preferred natural ripening after picking. Greed of hefty profits has motivated some of them to artificially hasten the ripening process at the cost of people’s health. Artificial ripening processes tend to degrade the entire quality of the fruit. The focus of this work is to describe a nondestructive method to detect artificial fruit ripening. To aid the detection, the proposed solution utilizes image processing and machine learning techniques to find the artificially ripened fruits. An input fruit image is selected as the test image. The next stage involves comparison of the features (histogram values) of the test image with the image of a naturally ripened one. A smartphone runs an android application to identify artificially ripened fruits. This work specifically concentrates on the commonly preferred Indian Mango and Indian Apple. The developed mechanism has an efficiency of 89-94% in correct detection.


Author(s):  
Prof. R. S. Shishupal ◽  
Varsha . ◽  
Supriya Mane ◽  
Vinita Singh ◽  
Damini Wasekar

To avoid fraudulent post for job in the internet, an android application using machine learning based classification techniques is proposed in the paper. Different classifiers are used for checking fraudulent post in the web and the results of those classifiers are compared for identifying the best fake job scam detection model. It helps in detecting fake job posts from an enormous number of posts. It is an android application that is used to conduct an online conversation via text and speech by using natural language processing (NLP) and predicts the fake job offers using machine learning techniques. The data we used contains real and fake job post. We cleaned and pre-processed our data. After we implemented the classifiers, we trained and evaluated them for prediction of fake job offers.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaojian Liu ◽  
Qian Lei ◽  
Kehong Liu

An explosive spread of Android malware causes a serious concern for Android application security. One of the solutions to detecting malicious payloads sneaking in an application is to treat the detection as a binary classification problem, which can be effectively tackled with traditional machine learning techniques. The key factors in detecting Android malware with machine learning techniques are feature selection and generation. Most of the existing approaches select and generate features without fully examining the structures of programs, and thus the important semantic information associated with these features is lost, consequently resulting in a low accuracy rate in detection. To address this issue, we propose a new feature generation approach for Android applications, which takes components and program structures into consideration and extracts features in a graph-based and semantics-rich style. This approach highlights two major distinguishing aspects: the context-based feature selection and graph-based feature generation. We abstract an Android application as a collection of reduced iCFGs (interprocedural control flow graphs) and extract original features from these graphs. Combining the original features and their contexts together, we generate new features which hold richer semantic information than the original ones. By embedding the features into a feature vector space, we can use machine learning techniques to train a malware detector. The experiment results show that this approach achieves an accuracy rate of 95.4% and a recall rate of 96.5%, which prove the effectiveness and advantages of our approach.


2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 389-P
Author(s):  
SATORU KODAMA ◽  
MAYUKO H. YAMADA ◽  
YUTA YAGUCHI ◽  
MASARU KITAZAWA ◽  
MASANORI KANEKO ◽  
...  

Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Sign in / Sign up

Export Citation Format

Share Document