Characteristic Parameters Estimation of Uncertainties Present in an Active Magnetic Bearing Integrated Flexible Rotor System Using Dynamic Reduction Technique

Author(s):  
Sampath Kumar Kuppa ◽  
Mohit Lal
2003 ◽  
Vol 125 (3) ◽  
pp. 307-316 ◽  
Author(s):  
Y. S. Ho ◽  
H. Liu ◽  
L. Yu

This paper is concerned with the effect of a thrust active magnetic bearing (TAMB) on the stability and bifurcation of an active magnetic bearing rotor system (AMBRS). The shaft is flexible and modeled by using the finite element method that can take the effects of inertia and shear into consideration. The model is reduced by a component mode synthesis method, which can conveniently account for nonlinear magnetic forces and moments of the bearing. Then the system equations are obtained by combining the equations of the reduced mechanical system and the equations of the decentralized PID controllers. This study focuses on the influence of nonlinearities on the stability and bifurcation of T periodic motion of the AMBRS subjected to the influences of both journal and thrust active magnetic bearings and mass eccentricity simultaneously. In the stability analysis, only periodic motion is investigated. The periodic motions and their stability margins are obtained by using shooting method and path-following technique. The local stability and bifurcation behaviors of periodic motions are obtained by using Floquet theory. The results indicate that the TAMB and mass eccentricity have great influence on nonlinear stability and bifurcation of the T periodic motion of system, cause the spillover of system nonlinear dynamics and degradation of stability and bifurcation of T periodic motion. Therefore, sufficient attention should be paid to these factors in the analysis and design of a flexible rotor system equipped with both journal and thrust magnetic bearings in order to ensure system reliability.


2021 ◽  
Vol 104 (1) ◽  
pp. 103-123
Author(s):  
Xiaoshen Zhang ◽  
Zhe Sun ◽  
Lei Zhao ◽  
Xunshi Yan ◽  
Jingjing Zhao ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 119336-119336
Author(s):  
Yangbo Zheng ◽  
Ni Mo ◽  
Yan Zhou ◽  
Zhengang Shi

Author(s):  
Yixin Su ◽  
Yanhui Ma ◽  
Qian Shi ◽  
Suyuan Yu

Dynamic characteristics of active magnetic bearing (AMB)-flexible rotor system are closely related to control law. To analyze dynamic characteristics of flexible rotor suspended by AMBs with linear quadratic regulation (LQR) controller, a simple and effective method based on numerical calculation of unbalanced response is proposed in this article. The model of flexible rotor is established based upon Euler-Bernoulli beam theory and Lagrange’s equation. Disc on the rotor and its Gyro effect are taken into account. LQR controller based on error and its derivative is developed to control electromagnetic force of AMB at each degree of freedom (DOF) in real time. Under the unbalanced exciting force, the steady-state response and transient response in time domain of each node of flexible rotor at 0–4000 rad/s are calculated numerically. The critical speeds of rotor are obtained by identification method quickly and easily.


Sign in / Sign up

Export Citation Format

Share Document