Inlet and Outlet Pipe Heat Interaction in a Contiguous Flight Auger (CFA) Pile

Author(s):  
Abubakar Kawuwa Sani ◽  
Rao Martand Singh ◽  
Ignazio Cavarretta ◽  
Cristina de Hollanda Cavalcanti Tsuha ◽  
Subhamoy Bhattacharya
2019 ◽  
Author(s):  
Sakil Hossen ◽  
AKM M. Morshed ◽  
Amitav Tikadar ◽  
Azzam S. Salman ◽  
Titan C. Paul

2007 ◽  
Vol 2 (3) ◽  
pp. 86-95
Author(s):  
R. Sudhakaran ◽  
◽  
V. Sella Durai ◽  
T. Kannan ◽  
P.S. Sivasakthievel ◽  
...  

2017 ◽  
Vol 16 (5) ◽  
pp. 1107-1113 ◽  
Author(s):  
Andrei Burlacu ◽  
Constantin Doru Lazarescu ◽  
Adrian Alexandru Serbanoiu ◽  
Marinela Barbuta ◽  
Vasilica Ciocan ◽  
...  

2017 ◽  
pp. 1
Author(s):  
Elmuataz Moftah ◽  
Ahmad Abdelaly ◽  
Ali Gebriel ◽  
Wahbe Pohwess

2021 ◽  
Vol 11 (13) ◽  
pp. 5954
Author(s):  
Muhammad Ishaq ◽  
Amjad Ali ◽  
Muhammad Amjad ◽  
Khalid Saifullah Syed ◽  
Zafar Iqbal

Heat transfer enhancement in heat exchangers results in thermal efficiency and energy saving. In double-pipe heat exchangers (DPHEs), extended or augmented fins in the annulus of the two concentric pipes, i.e., at the outer surface of the inner pipe, are used to extend the surface of contact for enhancing heat transfer. In this article, an innovative diamond-shaped design of extended fins is proposed for DPHEs. This type of fin is considered for the first time in the design of DPHEs. The triangular-shaped and rectangular-shaped fin designs of DPHE, available in the literature, can be recovered as special cases of the proposed design. An h-adaptive finite element method is employed for the solution of the governing equations. The results are computed for various performance measures against the emerging parameters. The results dictate that the optimal configurations of the diamond-shaped fins in the DPHE for an enhanced heat transfer are recommended as follows: If around 4–6, 8–12, or 16–32 fins are to be placed in the DPHE, then the height of the fins should be 20%, 80%, or 100%, respectively, of the annulus width. If frictional loss of heat is also to be considered, then for fin-heights of 20–80% and 100% of the annulus width, the placement of 4 and 8 diamond-shaped fins, respectively, is recommended for an enhanced heat transfer. These recommendations are for the radii ratio (i.e., the ratio of the inner pipe radius to that of the outer pipe) of 0.25. The recommendations are be modified if the radii ratio is altered.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
A. Bendaraa ◽  
My. M. Charafi ◽  
A. Hasnaoui

AbstractIn this study, we investigate the thermal behaviour of nanofluids in a double-pipe heat exchanger. It is about a counterflow configuration, designed to cool a lubrication unit of a thermoelectric power plant. The subject of this work is to evaluate the thermal performances of the exchanger by using a nanofluid based on alumina suspension comparing with deionized water. In order to evaluate the thermal performance of the studied configuration, we carried out numerical experiments in an application developed on COMSOL Multiphysics environment, these experiments are utilized to show the feasibility of this application. As result, we found that the nanofluid with an increase in its volume fraction leads to an increase in the overall exchange coefficient, the convective heat transfer coefficient, as well as the efficiency and the power of the exchanger. It is noted that an increase of 1% in volume fraction, can enhance the overall exchange coefficient, the power and the effectiveness of the exchanger by 17.62%, 1.473% and 10.80% respectively. Besides, it is noted that the increase in the concentration of nanofluids leads to a narrowing of the pinch points of the inlet and outlet temperatures, which means that nanofluids are more efficient in cooling temperatures than conventional fluids.


Sign in / Sign up

Export Citation Format

Share Document