Computational Results on Test Cases TC-2C and TC2-D Two Dimensional, Incompressible Flows with Recirculation

Author(s):  
J. J. Schmidt ◽  
P. S. Larsen
1998 ◽  
Vol 5 (3) ◽  
pp. 145-151
Author(s):  
A. D. Kirwan, Jr. ◽  
B. L. Lipphardt, Jr.

Abstract. Application of the Brown-Samelson theorem, which shows that particle motion is integrable in a class of vorticity-conserving, two-dimensional incompressible flows, is extended here to a class of explicit time dependent dynamically balanced flows in multilayered systems. Particle motion for nonsteady two-dimensional flows with discontinuities in the vorticity or potential vorticity fields (modon solutions) is shown to be integrable. An example of a two-layer modon solution constrained by observations of a Gulf Stream ring system is discussed.


2013 ◽  
Vol 45 (3) ◽  
pp. 1871-1885 ◽  
Author(s):  
C. Bardos ◽  
M. C. Lopes Filho ◽  
Dongjuan Niu ◽  
H. J. Nussenzveig Lopes ◽  
E. S. Titi

2012 ◽  
Vol 598 ◽  
pp. 516-519
Author(s):  
Yu Qing Ding ◽  
Wen Hui Tang ◽  
Xian Wen Ran ◽  
Xin Xu

The computational analysis of plate impact experiments on dry sand utilizing the Mie- Grüneisen (MG) equation of state and the P-α compaction model were investigated in this study. A number of two dimensional axial symmetric computations were performed by using the hydrocode AUTODYN. The computational results were compared with the particle velocity on the back surface of the rear plate measured by the VISAR system and the first shock-wave arrival times detected by piezoelectric pins in the samples respectively. It was found that the P-α compaction model was more accurately reproduce the experimental data than the MG EOS.


2008 ◽  
Vol 33-37 ◽  
pp. 1025-1030
Author(s):  
Gulbahar Wahap ◽  
Tatsuya Kobori ◽  
Yoko Takakura ◽  
Norio Arai ◽  
Yoshifumi Konishi ◽  
...  

Recently, the intravascular therapy using microcoils and stents to treat aneurysms has attracted researcher’s interest. In this study, in order to evaluate the effects of the stents, a numerical simulation of two-dimensional flows has been carried out for a pipe with a model of an aneurismal sac. Using aneurismal models with different inclined angles to the pipe, inflow conditions with steady states or pulsations have been applied in the range of Reynolds number in human blood flows. First, the computational results are compared with experiments under the steady inflow condition, which has shown the reliability of the numerical simulation. Furthermore, the mechanism of flows with an aneurismal model is discussed in the case with or without a stent, and consequently the effect of the stent is clarified.


Nonlinearity ◽  
2021 ◽  
Vol 34 (2) ◽  
pp. 1084-1135
Author(s):  
S Lanthaler ◽  
S Mishra ◽  
C Parés-Pulido

1987 ◽  
Vol 109 (4) ◽  
pp. 345-352 ◽  
Author(s):  
M. Reggio ◽  
R. Camarero

A numerical procedure to solve three-dimensional incompressible flows in arbitrary shapes is presented. The conservative form of the primitive-variable formulation of the time-dependent Navier-Stokes equations written for a general curvilinear coordiante system is adopted. The numerical scheme is based on an overlapping grid combined with opposed differencing for mass and pressure gradients. The pressure and the velocity components are stored at the same location: the center of the computational cell which is used for both mass and the momentum balance. The resulting scheme is stable and no oscillations in the velocity or pressure fields are detected. The method is applied to test cases of ducting and the results are compared with experimental and numerical data.


2019 ◽  
Vol 871 ◽  
pp. 755-774
Author(s):  
Arjun Sharma ◽  
Irina I. Rypina ◽  
Ruth Musgrave ◽  
George Haller

Inverting an evolving diffusive scalar field to reconstruct the underlying velocity field is an underdetermined problem. Here we show, however, that for two-dimensional incompressible flows, this inverse problem can still be uniquely solved if high-resolution tracer measurements, as well as velocity measurements along a curve transverse to the instantaneous scalar contours, are available. Such measurements enable solving a system of partial differential equations for the velocity components by the method of characteristics. If the value of the scalar diffusivity is known, then knowledge of just one velocity component along a transverse initial curve is sufficient. These conclusions extend to the shallow-water equations and to flows with spatially dependent diffusivity. We illustrate our results on velocity reconstruction from tracer fields for planar Navier–Stokes flows and for a barotropic ocean circulation model. We also discuss the use of the proposed velocity reconstruction in oceanographic applications to extend localized velocity measurements to larger spatial domains with the help of remotely sensed scalar fields.


Sign in / Sign up

Export Citation Format

Share Document