scholarly journals Application Characterization for Wireless Network Power Management

Author(s):  
Andreas Weissel ◽  
Matthias Faerber ◽  
Frank Bellosa
2005 ◽  
Vol 11 (4) ◽  
pp. 451-469 ◽  
Author(s):  
Manish Anand ◽  
Edmund B. Nightingale ◽  
Jason Flinn

2007 ◽  
pp. 325-345
Author(s):  
Feihui Li ◽  
Guangyu Chen ◽  
Mahmut Kandemir ◽  
Mustafa Karakoy

Author(s):  
Robert Hunjet ◽  
Andrew Coyle

A great deal of research has been carried out regarding increasing the capacity of wireless networks. The general findings are that increasing the number of nodes in a wireless network decreases individual throughput, simultaneous transmissions cause interference and therefore hinder capacity, and that topology control can increase network power efficiency and reduce the interference within the network. This paper demonstrates that appropriately spaced simultaneous transmissions are beneficial to the capacity of shared spectrum wireless networks and that adding nodes to a wireless network can, in fact, increase its capacity if the nodes are intelligently placed and node transmission powers are appropriately set. In this paper we firstly discuss the inefficiency of high power transmission for networks which allow simultaneous transmissions. It is then demonstrated that if multiple transmitters are utilised simultaneously with uniform transmission power, the network capacity is a local maximum if the required spacing conditions between the receivers are met. In the presence of background noise one can determine that this configuration represents the maximum network capacity achievable. The required separation is defined for the general case and shown to decrease as the number of simultaneous transmissions increases. This result is verified through simulations which demonstrate the construction of high capacity networks. Simulations are also presented which show how existing networks can be augmented with additional nodes and a reduction of transmission power, to exhibit higher uniform average network capacities.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7589
Author(s):  
Samikkannu Rajkumar ◽  
Dushantha Nalin K. Jayakody

In this paper, sum capacity maximization of the non-orthogonal multiple access (NOMA)-based wireless network is studied in the presence of ambient backscattering (ABS). Assuming that ABS is located next to far nodes, it improves the signal strength of far node cluster. By applying suitable successive interference cancellation (SIC) operation, far node cluster act as an internet of things (IoT) reader. Moreover, to improve the uplink performance of the nodes, a physical layer network coding (PLNC) scheme is applied in the proposed network. Power optimization is employed at the access point (AP) to enhance the downlink performance with total transmit power constraint and minimum data rate requirement per user constraint using Lagrangian’s function. In addition, end-to-end outage performance of the proposed wireless network is analyzed to enhance each wireless link capacity. Numerical results evident that the outage performance of the proposed network is significantly improved while using the ABS. Furthermore, the average bit error rate (BER) performance of the proposed wireless network is studied to improve the reliability. Simulation results are presented to validate the analytical expressions.


Sign in / Sign up

Export Citation Format

Share Document