scholarly journals Data Mining Approaches to Diffuse Large B–Cell Lymphoma Gene Expression Data Interpretation

Author(s):  
Jesús S. Aguilar-Ruiz ◽  
Francisco Azuaje ◽  
José C. Riquelme
2021 ◽  
Author(s):  
Mohamad Zamani-Ahmadmahmudi ◽  
Seyed Mahdi Nassiri ◽  
Amir Asadabadi

Abstract Gene expression profiling has been vastly used to extract the genes that can predict the clinical outcome in patients with diverse cancers, including diffuse large B-cell lymphoma (DLBCL). With the aid of bioinformatics and computational analysis on gene expression data, various prognostic gene signatures for DLBCL have been recently developed. The major drawback of the previous signatures is their inability to correctly predict survival in external data sets. In other words, they are not reproducible in other datasets. Hence, in this study, we sought to determine the gene(s) that can reproducibly and robustly predict survival in patients with DLBCL. Gene expression data were extracted from 7 datasets containing 1636 patients (GSE10846 [n=420], GSE31312 [n=470], GSE11318 [n=203], GSE32918 [n=172], GSE4475 [n=123], GSE69051 [n=157], and GSE34171 [n=91]). Genes significantly associated with overall survival were detected using the univariate Cox proportional hazards analysis with a P value <0.001 and a false discovery rate (FDR) <5%. Thereafter, significant genes common between all the datasets were extracted. Additionally, chromosomal aberrations in the corresponding region of the final common gene(s) were evaluated as copy number alterations using the single nucleotide polymorphism (SNP) data of 570 patients with DLBCL (GSE58718 [n=242], GSE57277 [n=148], and GSE34171 [n=180]). Our results indicated that reticulon family gene 1 (RTN1) was the only gene that met our rigorous pipeline criteria and associated with a favorable clinical outcome in all the datasets (P<0.001, FDR<5%). In the multivariate Cox proportional hazards analysis, this gene remained independent of the routine international prognostic index components (i.e., age, stage, lactate dehydrogenase level, Eastern Cooperative Oncology Group [ECOG] performance status, and number of extranodal sites) (P<0.0001). Furthermore, no significant chromosomal aberration was found in the RTN1 genomic region (14q23.1: Start 59,595,976/ End 59,870,966).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Selin Merdan ◽  
Kritika Subramanian ◽  
Turgay Ayer ◽  
Johan Van Weyenbergh ◽  
Andres Chang ◽  
...  

AbstractThe clinical risk stratification of diffuse large B-cell lymphoma (DLBCL) relies on the International Prognostic Index (IPI) for the identification of high-risk disease. Recent studies suggest that the immune microenvironment plays a role in treatment response prediction and survival in DLBCL. This study developed a risk prediction model and evaluated the model’s biological implications in association with the estimated profiles of immune infiltration. Gene-expression profiling of 718 patients with DLBCL was done, for which RNA sequencing data and clinical covariates were obtained from Reddy et al. (2017). Using unsupervised and supervised machine learning methods to identify survival-associated gene signatures, a multivariable model of survival was constructed. Tumor-infiltrating immune cell compositions were enumerated using CIBERSORT deconvolution analysis. A four gene-signature-based score was developed that separated patients into high- and low-risk groups. The combination of the gene-expression-based score with the IPI improved the discrimination on the validation and complete sets. The gene signatures were successfully validated with the deconvolution output. Correlating the deconvolution findings with the gene signatures and risk score, CD8+ T-cells and naïve CD4+ T-cells were associated with favorable prognosis. By analyzing the gene-expression data with a systematic approach, a risk prediction model that outperforms the existing risk assessment methods was developed and validated.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250013
Author(s):  
Chia-Hsin Hsu ◽  
Hirotaka Tomiyasu ◽  
Chi-Hsun Liao ◽  
Chen-Si Lin

Doxorubicin resistance is a major challenge in the successful treatment of canine diffuse large B-cell lymphoma (cDLBCL). In the present study, MethylCap-seq and RNA-seq were performed to characterize the genome-wide DNA methylation and differential gene expression patterns respectively in CLBL-1 8.0, a doxorubicin-resistant cDLBCL cell line, and in CLBL-1 as control, to investigate the underlying mechanisms of doxorubicin resistance in cDLBCL. A total of 20289 hypermethylated differentially methylated regions (DMRs) were detected. Among these, 1339 hypermethylated DMRs were in promoter regions, of which 24 genes showed an inverse correlation between methylation and gene expression. These 24 genes were involved in cell migration, according to gene ontology (GO) analysis. Also, 12855 hypermethylated DMRs were in gene-body regions. Among these, 353 genes showed a positive correlation between methylation and gene expression. Functional analysis of these 353 genes highlighted that TGF-β and lysosome-mediated signal pathways are significantly associated with the drug resistance of CLBL-1. The tumorigenic role of TGF-β signaling pathway in CLBL-1 8.0 was further validated by treating the cells with a TGF-β inhibitor(s) to show the increased chemo-sensitivity and intracellular doxorubicin accumulation, as well as decreased p-glycoprotein expression. In summary, the present study performed an integrative analysis of DNA methylation and gene expression in CLBL-1 8.0 and CLBL-1. The candidate genes and pathways identified in this study hold potential promise for overcoming doxorubicin resistance in cDLBCL.


Sign in / Sign up

Export Citation Format

Share Document