The stability of tropical rainforest margins, linking ecological, economic and social constraints of land use and conservation — an introduction

Author(s):  
Teja Tscharntke ◽  
Christoph Leuschner ◽  
Manfred Zeller ◽  
Edi Guhardja ◽  
Arifuddin Bidin
2019 ◽  
Vol 97 (2) ◽  
pp. 66-73
Author(s):  
O. Butrym ◽  
V. Doroschuk ◽  
N. Komarova ◽  
Ju. Tereschenko

2019 ◽  
Vol 41 (1) ◽  
pp. 146-153 ◽  
Author(s):  
Megersa Olumana Dinka ◽  
Degefa Dhuga Chaka

Abstract Land use/land cover changes (LULCC) at Adei watershed (Ethiopia) over a period of 23 years (1986–2009) has been analysed from LANDSAT imagery and ancillary data. The patterns (magnitude and direction) of LULCC were quantified and the final land use/land cover maps were produced after a supervised classification with appropriate post-processing. Image analysis results revealed that the study area has undergone substantial LULCC, primarily a shift from natural cover into managed agro-systems, which is apparently attributed to the increasing both human and livestock pressure. Over the 23 years, the aerial coverage of forest and grass lands declined by 8.5% and 4.3%, respectively. On the other hand, agricultural and shrub lands expanded by 9.1% and 3.7%, respectively. This shows that most of the previously covered by forest and grass lands are mostly shifted to the rapidly expanding farm land use classes. The findings of this study suggested that the rate of LULCC over the study period, particularly deforestation due to the expansion of farmland need to be given due attention to maintain the stability and sustainability of the ecosystem.


2020 ◽  
Vol 12 (18) ◽  
pp. 7350
Author(s):  
Qindong Fan ◽  
Fengtian Du ◽  
Hu Li

In order to improve the study of the spatial form of villages, fractal theory is used to analyze the plane and facade of Maling Village, Changdai Town, Mengjin County, Luoyang City, Henan Province, China. The results show that the village facade and plane spatial shape of Maling Village have obvious fractal characteristics and the fractal dimension can be used as an important index to evaluate the plane and facade shape of the village. The fractal dimension of each land use type is between 1.2415 and 1.7443. The stability index of land use types in the village follows the order of village construction land > cultivated land > road > garden land > woodland > grassland. The research results can provide decision-making information for the rational use and planning of village land.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1653 ◽  
Author(s):  
Suxiao Li ◽  
Hong Yang ◽  
Junguo Liu ◽  
Guangchun Lei

In China, the regional development policy has been shifting from solely economic orientation to ecologically sound economic growth. Using the Beijing-Tianjin-Hebei (Jing-Jin-Ji) region as a case study, we evaluated the temporal variations in ecosystem service values (ESVs) associated with land use changes from 1990 to 2015. We analyzed the dynamic relations between ESVs and the economy (indicated by the gross domestic product, GDP) by introducing the elasticity indicator (EI), which reflects the growth synchronism between the two, and the ecosystem service load (ESL), which reflects the ecological efficiency of economic growth. The results showed that the land use changes in Jing-Jin-Ji have been characterized by decreases in water areas, cropland, and grassland and increases in woodland and built-up areas. The ESVs of woodland and water areas contributed to 80% of the total ESV of the region, and the total ESV increased by 13.87% as a result of an area increase in woodland (26.87%). The average EI of Jing-Jin-Ji improved from 0.028 to 0.293 over the study period, indicating that the growth of ESVs was being balanced with the growth in the GDP. The average ESL decreased by 1.24, suggesting a significant improvement in ecological efficiency per unit GDP. Within the Jing-Jin-Ji region, large disparities in EI and ESL were shown to exist among Beijing, Tianjin, and Hebei owing to their differences in ecological resources, GDP compositions, and development levels. The study highlights the needs to reinforce woodland and water conservation, adjust economic structures, and balance the intraregional development to achieve the ecological-economic integrity of the region.


2014 ◽  
Vol 86 (4) ◽  
pp. 1735-1747 ◽  
Author(s):  
ANA EMILIA SIEGLOCH ◽  
MARCIA SURIANO ◽  
MARCIA SPIES ◽  
ALAÍDE FONSECA-GESSNER

The aim of this study was to test the effect of agricultural and forestry land use on the structure of mayfly assemblages in low-order streams. Twenty-nine headwater streams were investigated in the state of São Paulo. We analyzed 15 streams in pristine areas (mixed tropical rainforest, semideciduous forest and dense tropical rainforest), and 14 streams covered with sugarcane, eucalyptus and pasture. Mayfly richness obtained by rarefaction curves was higher in pristine areas (21 genera), especially in mixed and semideciduous forest when compared to land use (9 genera), where values were particularly low in sugarcane plantation (3 genera). The non-metric multidimensional scaling (NMDS) ordination showed clear difference in mayfly assemblages between land uses and pristine areas, supported by analysis of similarity (R=0.67, p=0.001). In partial redundancy analysis (pRDA), the environmental descriptors that best explained differences in assemblage structure were Riparian, Channel and Environmental Inventory (RCE) index score, percentage of fine sediment stream substrate, water pH and land elevation. Our results show that agricultural and forestry land use has a strong negative effect on the structure of mayfly assemblages. These results also support the use of mayflies as environmental indicators, as some genera were sensitive to changes in land use, while others responded to naturally occurring changes in the study area.


2010 ◽  
Vol 75 (658) ◽  
pp. 2863-2872
Author(s):  
Jaemyun KWON ◽  
Masaru MIYAWAKI
Keyword(s):  
Land Use ◽  

2019 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Hendri

Indonesia is one of the countries with the largest tropical rainforest area, especially in Papua Island together with Papua New Guinea accounted the third largest tropical rainforests in the world, after the Amazon (336.7 million ha) and Congo (181.3 million ha). The total tropical rainforest area is 68.7 million ha contained Papua about 57% (39.2 million ha) and 43% (29.5 million ha) Papua New Guinea. Unfortunately, deforestation rates in the few decades increased from 1.39 million ha in the period 1985 – 1997 and 0.6 million ha in the period 2000 – 2005. The direct impact of rapid LULUCF (Land Use, Land Use Change & Forestry) changes since 1980`s has accumulated critical land by 29.0% of forest area in West Papua and 31.4% of forest area in Papua. Climate change affected in Papua region due to rapid amount GHG`s emissions into the atmosphere by increasing average temperature about 0.7oC, minimum temperature (0.7oC) and maximum temperature (1.2oC) during period 1996 – 2005. Other effects of climate change the decreased rainfall up to 26% per month in the last decade, 50% reduced total agriculture productivity, expanded malaria diseases, and increased extreme condition such as drought with intensity of forest fire detected in Sorong due to inter-annual climate variability events, such as the El-Niño event and flood due to the La-Niña event. However, it is difficult task to build mitigation and adaptation planning in the region or local scale due to the lack information, the lack human resources, and local topography and phenomena. In that case, so far, no study has been conducted in Papua region to build mitigation and adaptation planning for carbon management. Therefore, this study tries to promote a carbon management program for help local government to solve forest environmental problems consideration of climate change.


Sign in / Sign up

Export Citation Format

Share Document