Integration of Explicit and Implicit Knowledge in Hybrid Intelligent Systems

Author(s):  
Mircea Gh. Negoita ◽  
Daniel Neagu ◽  
Vasile Palade
2015 ◽  
Vol 5 (2) ◽  
pp. 194-205 ◽  
Author(s):  
Scarlat Emil ◽  
Virginia Mărăcine

Purpose – The purpose of this paper is to discuss how tacit and explicit knowledge determine grey knowledge and how these are stimulated through interactions within networks, forming the grey hybrid intelligent systems (HISs). The feedback processes and mechanisms between internal and external knowledge determine the apparition of grey knowledge into an intelligent system (IS). The extension of ISs is determined by the ubiquity of the internet but, in our framework, the grey knowledge flows assure the viability and effectiveness of these systems. Design/methodology/approach – Some characteristics of the Hybrid Intelligent Knowledge Systems are put forward along with a series of models of hybrid computational intelligence architectures. More, relevant examples from the literature related to the hybrid systems architectures are presented, underlying their main advantages and disadvantages. Findings – Due to the lack of a common framework it remains often difficult to compare the various HISs conceptually and evaluate their performance comparatively. Different applications in different areas are needed for establishing the best combinations between models that are designed using grey, fuzzy, neural network, genetic, evolutionist and other methods. But all these systems are knowledge dependent, the main flow that is used in all parts of every kind of system being the knowledge. Grey knowledge is an important part of the real systems and the study of its proprieties using the methods and techniques of grey system theory remains an important direction of the researches. Originality/value – The paper discusses the differences among the three types of knowledge and how they and the grey systems theory can be used in different hybrid architectures.


2007 ◽  
Vol 30 (1) ◽  
pp. 114-132 ◽  
Author(s):  
Sandhya Peddabachigari ◽  
Ajith Abraham ◽  
Crina Grosan ◽  
Johnson Thomas

2021 ◽  
Vol 11 ◽  
Author(s):  
Christopher R. Madan ◽  
Anthony Singhal

Learning to play a musical instrument involves mapping visual + auditory cues to motor movements and anticipating transitions. Inspired by the serial reaction time task and artificial grammar learning, we investigated explicit and implicit knowledge of statistical learning in a sensorimotor task. Using a between-subjects design with four groups, one group of participants were provided with visual cues and followed along by tapping the corresponding fingertip to their thumb, while using a computer glove. Another group additionally received accompanying auditory tones; the final two groups received sensory (visual or visual + auditory) cues but did not provide a motor response—all together following a 2 × 2 design. Implicit knowledge was measured by response time, whereas explicit knowledge was assessed using probe tests. Findings indicate that explicit knowledge was best with only the single modality, but implicit knowledge was best when all three modalities were involved.


Sign in / Sign up

Export Citation Format

Share Document