Characterization of electrically conductive biodegradable materials for potential medical application

Author(s):  
Krystyna Pietrucha ◽  
E. Marzec
1996 ◽  
Vol 32 (6) ◽  
pp. 681-689 ◽  
Author(s):  
Mária Omastová ◽  
Jürgen Pionteck ◽  
Stanislav Košina

Polymer ◽  
2007 ◽  
Vol 48 (22) ◽  
pp. 6554-6564 ◽  
Author(s):  
Jason D. Clapper ◽  
Jessica M. Skeie ◽  
Robert F. Mullins ◽  
C. Allan Guymon

2004 ◽  
Vol 449-452 ◽  
pp. 233-236 ◽  
Author(s):  
Jun Suh Yu ◽  
B.S. Lee ◽  
Sung Churl Choi ◽  
Ji Hun Oh ◽  
Jae Chun Lee

Electrically conductive porous Si/SiC fiber media were prepared by infiltration of liquid silicon into porous carbon fiber preforms. The series rule of mixture for the effective electrical conductivity was applied to the disc shaped samples to estimate their silicon content, effective electrical conductivity and porosity. The electrical conductivity was estimated by assuming the disc sample as a plate of equivalent geometry, i.e., same thickness, electrode distance and volume. As the volumetric content of silicon in a sample increases from 0.026% to 0.97%, the estimated electrical conductivity increases from 0.17 S/cm to 2.09 S/cm. The porosity of the samples measured by Archimedes principle was in the range of 75~83% and 1~4% less than the one estimated by the series rule of mixture for the effective electrical conductivity.


2002 ◽  
Vol 126 (2-3) ◽  
pp. 173-178 ◽  
Author(s):  
D Mecerreyes ◽  
R Stevens ◽  
C Nguyen ◽  
J.A Pomposo ◽  
M Bengoetxea ◽  
...  

Author(s):  
Rajiv Borah ◽  
Ashok Kumar

This chapter includes detailed review of the research undertaken with conducting polymer (CP) based composites with chitosan (Ch) for tissue engineering till date. The beneficial role of electrically conductive biomaterials has been discussed with the possible strategies to overcome the shortcomings of CP alone through blending with Ch due to its excellent biocompatibility, biodegradability, and bioactivity. Additionally, this embodiment deals with the optimization and characterization of electrically conductive, biocompatible and biodegradable Polyaniline: Chitosan (PAni:Ch) nanocomposites as cell culture substrates for MDA-MB-231 and NIH 3T3 fibroblast in order to examine the combined effect of nanofiber structure and surface modification on cell-biomaterial interactions. The nanocomposites were further checked as a conductive scaffold for electrical stimulation of a neuronal model PC12 cell line in order to explore the potential of the materials in neural tissue engineering.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


Sign in / Sign up

Export Citation Format

Share Document