Biodegradable Materials
Recently Published Documents


TOTAL DOCUMENTS

511
(FIVE YEARS 286)

H-INDEX

41
(FIVE YEARS 14)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 220
Author(s):  
Dorota Skowrońska ◽  
Katarzyna Wilpiszewska

In this review, the application of deep eutectic solvents (DESs) as starch solvents, plasticizers and for other treatment has been described. Starch, as one of the most abundant biopolymers, is considered for forming new biodegradable materials. This new approach, referring to applying deep eutectic solvents for dissolving starch, its plasticization and other modifications, was presented. A DES could be a good alternative for common starch plasticizers (e.g., glycerol, urea) as well as recently considered ionic liquids. The high variety of DES component combinations makes it possible to obtain materials with the properties specific for given applications.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 136
Author(s):  
Edson Antonio dos Santos Filho ◽  
Carlos Bruno Barreto Luna ◽  
Danilo Diniz Siqueira ◽  
Eduardo da Silva Barbosa Ferreira ◽  
Edcleide Maria Araújo

Poly(ethylene-octene) grafted with glycidyl methacrylate (POE-g-GMA) and ethylene elastomeric grafted with glycidyl methacrylate (EE-g-GMA) were used as impact modifiers, aiming for tailoring poly(lactic acid) (PLA) properties. POE-g-GMA and EE-g-GMA was used in a proportion of 5; 7.5 and 10%, considering a good balance of properties for PLA. The PLA/POE-g-GMA and PLA/EE-g-GMA blends were processed in a twin-screw extruder and injection molded. The FTIR spectra indicated interactions between the PLA and the modifiers. The 10% addition of EE-g-GMA and POE-g-GMA promoted significant increases in impact strength, with gains of 108% and 140%, respectively. These acted as heterogeneous nucleating agents in the PLA matrix, generating a higher crystallinity degree for the blends. This impacted to keep the thermal deflection temperature (HDT) and Shore D hardness at the same level as PLA. By thermogravimetry (TG), the blends showed increased thermal stability, suggesting a stabilizing effect of the modifiers POE-g-GMA and EE-g-GMA on the PLA matrix. Scanning electron microscopy (SEM) showed dispersed POE-g-GMA and EE-g-GMA particles, as well as the presence of ligand reinforcing the systems interaction. The PLA properties can be tailored and improved by adding small concentrations of POE-g-GMA and EE-g-GMA. In light of this, new environmentally friendly and semi-biodegradable materials can be manufactured for application in the packaging industry.


Morphologia ◽  
2021 ◽  
Vol 15 (3) ◽  
pp. 57-61
Author(s):  
O.A. Hryhorieva ◽  
Yu.Yu. Abrosimov ◽  
V.V. Chornyi

Background. In Ukraine, there has recently been an increase in the number of limb bone fractures among the population, in particular, due to increase in the number of elderly people, which is associated with the development of age-related osteoporosis and fragility of bones. Therefore, the use of artificial implants in traumatology is becoming increasingly important. The search for new bioinert and biodegradable materials, that are capable of providing rapid fracture consolidation and do not require repeated surgical intervention, continues. Objective. To elaborate a model for the research of using carbon-carbon composite nail for intramedullary osteosynthesis in laboratory rats with fractures of femur and tibia in norm and with experimental osteoporosis. Methods. The work investigated the lower limbs of 6 groups of Wistar rats. The first part of the study involved 4 groups of rats with modeled tibial fracture with subsequent osteosynthesis in norm and with experimental osteoporosis. The second part of the research included two groups of laboratory rats with modeled femur fracture. In both parts we used metal injection needle, as well as carbon-carbon composite nail for osteosynthesis. Results. All animals underwent surgery well, stepped on the injured limb. X-ray examination after the osteosynthesis demonstrated satisfactory reposition of the fragments. One month after modeled fracture in rats with experimental osteoporosis a violation of the normal consolidation of the fracture was observed, especially in the group where carbon-carbon composite nails were used for osteosynthesis. Further, until the 180th day after the surgery there were no peculiarities, function of the limbs was restored, mainly without expressed angular deformities. Conclusion. The above mentioned model was successfully elaborated for the research of using carbon-carbon composite nail for intramedullary osteosynthesis in laboratory rats with fractures of femur and tibia in norm and with experimental osteoporosis.


2021 ◽  
Vol 12 (1) ◽  
pp. 191
Author(s):  
Miguel Suffo ◽  
Cristobal J. López-Marín

Current commercial software tools implement turbulence models on computational fluid dynamics (CFD) techniques and combine them with fluid-structural interaction (FSI) techniques. There are currently a great variety of turbulence methods that are worth investigating through a comparative study in order to delineate their behavior on scaffolds used in tissue engineering and bone regeneration. Additive manufacturing (AM) offers the opportunity to obtain three-dimensional printed scaffolds (3D scaffolds) that are designed respecting morphologies and that are typically used for the fused deposition model (FDM). These are typically made using biocompatible and biodegradable materials, such as polyetherimide (PEI), ULTEM 1010 biocompatible and polylactic acid (PLA). Starting from our own geometric model, simulations were carried out applying a series of turbulence models which have been proposed due to a variety of properties, such as permeability, speed regime, pressures, depressions and stiffness, that in turn are subject to boundary conditions based on a blood torrent. The obtained results revealed that the detached eddy simulation (DES) model shows better performance for the use of 3D scaffolds in its normal operating regime. Finally, although the results do not present relevant differences between the two materials used in the comparison, the prototypes simulated in PEI ULTEM 1010 do not allow their manufacture in FDM for the required pore size. The printed 3D scaffolds of PLA reveal an elastic behavior and a rigidity that are similar to other prototypes of ceramic composition. Prototypes made of PLA reveal unpredictable variability in pore and layer size which are very similar to cell growth itself and difficult to keep constant.


2021 ◽  
pp. 088532822110589
Author(s):  
Girish Chandra ◽  
Ajay Pandey

Locking compression plate (LCP) has conventionally been the most extensively employed plate in internal fixation bone implants used in orthopaedic applications. LCP is usually made up of non-biodegradable materials that have a higher mechanical capability. Biodegradable materials, by and large, have less mechanical strength at the point of implantation and lose strength even more after a few months of continuous degradation in the physiological environment. To attain the adequate mechanical capability of a biodegradable bone implant plate, LCP has been modified by adding laddered – type semicircular filleted embossed structure. This improved design may be named as laddered embossed locking compression plate (LELCP). It is likely to provide additional mechanical strength with the most eligible biodegradable material, namely, Mg-alloy, even after continuous degradation that results in diminished thickness. For mechanical validation and comparison of LELCP made up of Mg-alloy, four-point bending test (4PBT) and axial compressive test (ACT) have been performed on LELCP, LCP and continuously degraded LELCP (CD-LELCP) with the aid of finite element method (FEM) for the assembly of bone segments, plate and screw segments. LELCP, when subjected to the above mentioned two tests, has been observed to provide 26% and 10.4% lower equivalent stress, respectively, than LCP without degradation. It is also observed mechanically safe and capable of up to 2 and 6 months of continuous degradation (uniform reduction in thickness) for 4PBT and ACT, respectively. These results have also been found reasonably accurate through real-time surgical simulations by approaching the most optimal mesh. According to these improved mechanical performance parameters, LELCP may be used or considered as a viable biodegradable implant plate option in the future after real life or in vivo validation.


2021 ◽  
Vol 12 (1) ◽  
pp. 67
Author(s):  
Sofia M. Costa ◽  
Luísa Pacheco ◽  
Wilson Antunes ◽  
Ricardo Vieira ◽  
Nuno Bem ◽  
...  

Due to the prevalence of the COVID-19 pandemic, the demand for disposable facemasks has become a global issue. Unfortunately, the use of these products has negative effects on the environment, and therefore, the use of biodegradable materials is a powerful strategy to overcome this challenge. Aligned with this concept, in this work, biodegradable facemasks were developed using poly(ε-caprolactone) (PCL) polymer and cotton natural fibers. The filter layer was produced using an electrospinning technique, since electrospun membranes present remarkable characteristics for air filtration. The electrospun membranes were functionalized with different nanoparticles (NPs), including silver (Ag), titanium dioxide (TiO2) and magnesium oxide (MgO), in order to include new properties, namely antibacterial effect. The developed membranes were characterized by FESEM, EDS, ATR-FTIR, GSDR and TGA, which confirmed the successful impregnation of NPs onto PCL membranes. The antibacterial effect and filtration efficiency were assessed, with the PCL/MgO NPs membrane presenting better results, showing inhibition zone diameters of 25.3 and 13.5 mm against Gram-positive and Gram-negative bacteria, respectively, and filtration efficiency of 99.4%. Three facemask prototypes were developed, and their filtration efficiency, air permeability and thermal comfort were evaluated. Overall, this study demonstrates the potential of PCL/NPs electrospun membranes to act as an active and biodegradable filter layer in facemasks.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4439
Author(s):  
Rudolf Kiefer ◽  
Fred Elhi ◽  
Anna-Liisa Peikolainen ◽  
Tarmo Tamm

The trend across the whole of society is to focus on natural and/or biodegradable materials such as cellulose (Cell) over synthetic polymers. Among other usage scenarios, Cell can be combined with electroactive components such as multiwall carbon nanotubes (CNT) to form composites, such as Cell-CNT fibers, for applications in actuators, sensors, and energy storage devices. In this work, we aim to show that by changing the potential window, qualitative multifunctionality of the composites can be invoked, in both electromechanical response as well as energy storage capability. Cell-CNT fibers were investigated in different potential ranges (0.8 V to −0.3 V, 0.55 V to −0.8 V, 1 V to −0.8 V, and 1.5 V to −0.8 V), revealing the transfer from cation-active to anion-active as the potential window shifted towards more positive potentials. Moreover, increasing the driving frequency also shifts the mode from cation- to anion-active. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy were conducted to determine the ion species participating in charge compensation under different conditions.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1869
Author(s):  
Camila Ramão Contessa ◽  
Nathieli Bastos de Souza ◽  
Guilherme Battú Gonçalo ◽  
Catarina Motta de Moura ◽  
Gabriela Silveira da Rosa ◽  
...  

In the search for new biodegradable materials and greater microbiological safety and stability of perishable food products, this study aimed to develop a bioplastic antibacterial film incorporating bacteriocin for application in commercial curd cheese and monitoring of microbiological stability. Films with good handling characteristics as well as physical, barrier, and mechanical properties were obtained. Regarding the antibacterial activity, the microbial reduction was demonstrated in a food matrix, obtaining a reduction of 3 logarithmic cycles for the group of coagulase positive staphylococci and from 1100 to <3.00 MPN/g in the analysis of thermotolerant coliforms. Therefore, the film presented food barrier characteristics with the external environment and adequate migration of the antibacterial compound to the product, contributing to the reduction of contamination of a food with high initial microbial load.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2244
Author(s):  
Emanuela Drago ◽  
Roberta Campardelli ◽  
Iolanda De Marco ◽  
Patrizia Perego

Active food packaging represents an innovative way to conceive food packages. The innovation lies in using natural-based and biodegradable materials to produce a system intended to interact with the food product to preserve its quality and shelf-life. Compared to traditional plastics, active packaging is designed and regulated to release substances in a controlled manner, mainly antimicrobial and antioxidant compounds. Conventional technologies are not suitable for treating these natural substances; therefore, the research for innovative and green techniques represents a challenge in this field. The aim of this work is to compare two different polymeric structures: nanofibrous films obtained by electrospinning and continuous films obtained by solvent casting, to identify the best solution and process conditions for subjecting the samples to the supercritical fluids impregnation process (SFI). The supports optimized were functionalized by impregnating alpha-tocopherol using the SFI process. In particular, the different morphologies of the samples both before and after the supercritical impregnation process were initially studied, identifying the limits and possible solutions to obtain an optimization of the constructs to be impregnated with this innovative green technology in the packaging field.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuyun Yang ◽  
Zizhong Shi ◽  
Xiufang Cui ◽  
Yuejun Liu ◽  
Guo Jin ◽  
...  

Iron and magnesium are being considered as promising candidates for biodegradable materials in medical applications, both materials having their specific advantages and challenges. A hybrid of metallic iron and magnesium in a layered composite is studied in the present work, to combine the merits of both metals. A single-step dip-coating method was employed to prepare the layered composite material. Morphology, composition, crystal structure and corrosion behavior of the Mg/Fe sheet were assessed by SEM, EDX, XRD, and electrochemical measurements. The Mg/Fe layered composite sheet is composed of the magnesium substrate, a 1–2 µm metallic iron coating, and a pompon-like Mg(OH)2/MgO top layer. Long-term open-circuit potential measurements revealed that the Mg/Fe sheet samples exhibit a “self-healing” effect in Dulbecco’s modified Eagle’s medium.


Sign in / Sign up

Export Citation Format

Share Document