Corresponding Articular Cartilage Thickness Measurements in the Knee Joint by Modelling the Underlying Bone (Commercial in Confidence)

Author(s):  
Tomos G. Williams ◽  
Christopher J. Taylor ◽  
ZaiXiang Gao ◽  
John C. Waterton
1994 ◽  
Vol 12 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Ilkka Kiviranta ◽  
Markku Tammi ◽  
Jukka Jurvelin ◽  
Jari Arokoski ◽  
Anna-Marja Säämänen ◽  
...  

Cartilage ◽  
2019 ◽  
pp. 194760351986024
Author(s):  
Paul Cernohorsky ◽  
Simon D. Strackee ◽  
Geert J. Streekstra ◽  
Jeroen P. van den Wijngaard ◽  
Jos A. E. Spaan ◽  
...  

Objective Accurate, high-resolution imaging of articular cartilage thickness is an important clinical challenge in patients with osteoarthritis, especially in small joints. In this study, computed tomography (CT) mediated catheter-based optical coherence tomography (OCT) was utilized to create a digital reconstruction of the articular surface of the trapeziometacarpal (TMC) joint and to assess cartilage thickness in comparison to cryomicrotome data. Design Using needle-based introduction of the OCT probe, the articular surface of the TMC joint of 5 cadaver wrists was scanned in different probe positions with matching CT scans to record the intraarticular probe trajectory. Subsequently and based on the acquired CT data, 3-dimensional realignment of the OCT data to the curved intraarticular trajectory was performed for all probe positions. The scanned TMC joints were processed using a cryomicrotome imaging system. Finally, cartilage thickness measurements between OCT and cryomicrotome data were compared. Results Successful visualization of TMC articular cartilage was performed using OCT. The CT-mediated registration yielded a digital reconstruction of the articular surface on which thickness measurements could be performed. A near-perfect agreement between OCT and cryomicrotome thickness measurements was found ( r2 = 0.989). Conclusion The proposed approach enables 3D reconstruction of the TMC articular surface with subsequent accurate cartilage thickness measurements, encouraging the development of intraarticular cartilage OCT for future (clinical) application.


1992 ◽  
Vol &NA; (283) ◽  
pp. 302???308 ◽  
Author(s):  
ILKKA KIVIRANTA ◽  
MARKKU TAMMI ◽  
JUKKA JURVELIN ◽  
JARI AROKOSKI ◽  
ANNA-MARJA S??U??UM??UNEN ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Zutong Wu ◽  
Jianwen Yin ◽  
Yajia Yue ◽  
Yiqun Zhang

We investigated the application effect of different concentrations of platelet-rich plasma (PRP) combined with quadriceps training on cartilage repair of knee osteoarthritis. Data of 37 patients with knee osteoarthritis (KOA) treated in our hospital (November 2019–February 2021) were retrospectively analyzed and the patients were divided into low concentration group (LCG) (n = 12), medium concentration group (MCG) (n = 12), and high concentration group (HCG) (n = 13) according to the order of admission. All patients received quadriceps training. Three groups above received knee injection of PRP, and the platelet concentrations were 1000–1400 × 109/L, 1400–1800 × 109/L, and 1800–2100 × 109/L, respectively. Articular cartilage thickness of the medial and lateral femur, knee joint function scores, inflammatory factor levels, and matrix metalloproteinases (MMPs) levels were compared. After treatment, compared with the MCG and HCG, articular cartilage thickness of the medial and lateral femur of the diseased side in the LCG was obviously lower ( P < 0.05 ). At 2 months after treatment (T3), compared with the HCG, articular cartilage thickness of the medial and lateral femur of the diseased side in the MCG was obviously higher ( P < 0.05 ), without remarkable difference in articular cartilage thickness of the medial and lateral femur of the healthy side among three groups ( P > 0.05 ). After treatment, compared with the LCG, knee joint function scores of the MCG and HCG were obviously better ( P < 0.001 ). Compared with the HCG, the knee function score at T3 in the MCG was obviously better ( P < 0.001 ). After treatment, compared with the LCG, inflammatory factor levels and levels of MMPs in the MCG and HCG were obviously lower ( P < 0.05 ). Compared with the HCG, inflammatory factor levels and levels of MMPs at T3 in the MCG were obviously lower ( P < 0.05 ). PRP combined with quadriceps training can accelerate cartilage repair of patients with KOA and reduce inflammatory factor levels and levels of MMPs, but the treatment effect of PRP depends on platelet concentration, with the best range of 1400–1800 × 109/L. Too high or too low platelet concentrations will affect recovery of knee function.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Kyösti Kauppinen ◽  
Victor Casula ◽  
Štefan Zbýň ◽  
Roberto Blanco Sequeiros ◽  
Simo S. Saarakkala ◽  
...  

Objective. Ultrasonography (US) has a promising role in evaluating the knee joint, but capability to visualize the femoral articular cartilage needs systematic evaluation. We measured the extent of this acoustic window by comparing standardized US images with the corresponding MRI views of the femoral cartilage. Design. Ten healthy volunteers without knee pathology underwent systematic US and MRI evaluation of both knees. The femoral cartilage was assessed on the oblique transverse axial plane with US and with 3D MRI. The acoustic window on US was compared to the corresponding views of the femoral sulcus and both condyles on MRI. The mean imaging coverage of the femoral cartilage and the cartilage thickness measurements on US and MRI were compared. Results. Mean imaging coverage of the cartilage of the medial femoral condyle was 66% (range 54%–80%) and on the lateral femoral condyle 37% (range 25%–51%) compared with MRI. Mean cartilage thickness measurement in the femoral sulcus was 3.17 mm with US and 3.61 mm with MRI (14.0% difference). The corresponding measurements in the medial femoral condyle were 1.95 mm with US and 2.35 mm with MRI (21.0% difference), and in the lateral femoral condyle, they were 2.17 mm and 2.73 mm (25.6% difference), respectively. Conclusion. Two-thirds of the articular cartilage of the medial femoral condyle, and one-third in the lateral femoral condyle, can be assessed with US. The cartilage thickness measurements seem to be underestimated by US. These results show promise for the evaluation of the weight-bearing cartilage of the medial femoral condyle with US.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12509
Author(s):  
Karol Daszkiewicz ◽  
Piotr Łuczkiewicz

Background Increased mechanical loading and pathological response of joint tissue to the abnormal mechanical stress can cause degradation of cartilage characteristic of knee osteoarthritis (OA). Despite osteoarthritis is risk factor for the development of meniscal lesions the mechanism of degenerative meniscal lesions is still unclear. Therefore, the aim of the study is to investigate the influence of medial compartment knee OA on the stress state and deformation of the medial meniscus. Methods The finite element method was used to simulate the stance phase of the gait cycle. An intact knee model was prepared based on magnetic resonance scans of the left knee joint of a healthy volunteer. Degenerative changes in the medial knee OA model were simulated by nonuniform reduction in articular cartilage thickness in specific areas and by a decrease in the material parameters of cartilage and menisci. Two additional models were created to separately evaluate the effect of alterations in articular cartilage geometry and material parameters of the soft tissues on the results. A nonlinear dynamic analysis was performed for standardized knee loads applied to the tibia bone. Results The maximum von Mises stress of 26.8 MPa was observed in the posterior part of the medial meniscus body in the OA model. The maximal hoop stress for the first peak of total force was 83% greater in the posterior horn and only 11% greater in the anterior horn of the medial meniscus in the OA model than in the intact model. The reduction in cartilage thickness caused an increase of 57% in medial translation of the medial meniscus body. A decrease in the compressive modulus of menisci resulted in a 2.5-fold greater reduction in the meniscal body width compared to the intact model. Conclusions Higher hoop stress levels on the inner edge of the posterior part of the medial meniscus in the OA model than in the intact model are associated with a greater medial translation of the meniscus body and a greater reduction in its width. The considerable increase in hoop stresses shows that medial knee OA may contribute to the initiation of meniscal radial tears.


Sign in / Sign up

Export Citation Format

Share Document