The MAP Kinase Cascade That Includes MAPKKK-Related Protein Kinase NPK1 Controls a Mitotic Process in Plant Cells

Author(s):  
Ryuichi Nishihama ◽  
Yasunori Machida
1993 ◽  
Vol 13 (10) ◽  
pp. 6241-6252 ◽  
Author(s):  
M L Samuels ◽  
M J Weber ◽  
J M Bishop ◽  
M McMahon

We report a strategy for regulating the activity of a cytoplasmic signaling molecule, the protein kinase encoded by raf-1. Retroviruses encoding a gene fusion between an oncogenic form of human p74raf-1 and the hormone-binding domain of the human estrogen receptor (hrafER) were constructed. The fusion protein was nontransforming in the absence of estradiol but could be reversibly activated by the addition or removal of estradiol from the growth media. Activation of hrafER was accompanied in C7 3T3 cells by the rapid, protein synthesis-independent activation of both mitogen-activated protein (MAP) kinase kinase and p42/p44 MAP kinase and by phosphorylation of the resident p74raf-1 protein as demonstrated by decreased electrophoretic mobility. The phosphorylation of p74raf-1 had no effect on the kinase activity of the protein, indicating that mobility shift is an unreliable indicator of p74raf-1 enzymatic activity. Removal of estradiol from the growth media led to a rapid inactivation of the MAP kinase cascade. These results demonstrate that Raf-1 can activate the MAP kinase cascade in vivo, independent of other "upstream" signaling components. Parallel experiments performed with rat1a cells conditionally transformed by hrafER demonstrated activation of MAP kinase kinase in response to estradiol but no subsequent activation of p42/p44 MAP kinases or phosphorylation of p74raf-1. This result suggests that in rat1a cells, p42/p44 MAP kinase activation is not required for Raf-1-mediated oncogenic transformation. Estradiol-dependent activation of p42/p44 MAP kinases and phosphorylation of p74raf-1 was, however, observed in rat1a cells expressing hrafER when the cells were pretreated with okadaic acid. This result suggests that the level of protein phosphatase activity may play a crucial role in the regulation of the MAP kinase cascade. Our results provide the first example of a cytosolic signal transducer being harnessed by fusion to the hormone-binding domain of the estrogen receptor. This conditional system not only will aid the elucidation of the function of Raf-1 but also may be more broadly useful for the construction of conditional forms of other kinases and signaling molecules.


1999 ◽  
Vol 19 (7) ◽  
pp. 4874-4887 ◽  
Author(s):  
Xuewen Pan ◽  
Joseph Heitman

ABSTRACT In response to nitrogen starvation, diploid cells of the yeastSaccharomyces cerevisiae differentiate to a filamentous growth form known as pseudohyphal differentiation. Filamentous growth is regulated by elements of the pheromone mitogen-activated protein (MAP) kinase cascade and a second signaling cascade involving the receptor Gpr1, the Gα protein Gpa2, Ras2, and cyclic AMP (cAMP). We show here that the Gpr1-Gpa2-cAMP pathway signals via the cAMP-dependent protein kinase, protein kinase A (PKA), to regulate pseudohyphal differentiation. Activation of PKA by mutation of the regulatory subunit Bcy1 enhances filamentous growth. Mutation and overexpression of the PKA catalytic subunits reveal that the Tpk2 catalytic subunit activates filamentous growth, whereas the Tpk1 and Tpk3 catalytic subunits inhibit filamentous growth. The PKA pathway regulates unipolar budding and agar invasion, whereas the MAP kinase cascade regulates cell elongation and invasion. Epistasis analysis supports a model in which PKA functions downstream of the Gpr1 receptor and the Gpa2 and Ras2 G proteins. Activation of filamentous growth by PKA does not require the transcription factors Ste12 and Tec1 of the MAP kinase cascade, Phd1, or the PKA targets Msn2 and Msn4. PKA signals pseudohyphal growth, in part, by regulating Flo8-dependent expression of the cell surface flocculin Flo11. In summary, the cAMP-dependent protein kinase plays an intimate positive and negative role in regulating filamentous growth, and these findings may provide insight into the roles of PKA in mating, morphogenesis, and virulence in other yeasts and pathogenic fungi.


1993 ◽  
Vol 13 (10) ◽  
pp. 6241-6252
Author(s):  
M L Samuels ◽  
M J Weber ◽  
J M Bishop ◽  
M McMahon

We report a strategy for regulating the activity of a cytoplasmic signaling molecule, the protein kinase encoded by raf-1. Retroviruses encoding a gene fusion between an oncogenic form of human p74raf-1 and the hormone-binding domain of the human estrogen receptor (hrafER) were constructed. The fusion protein was nontransforming in the absence of estradiol but could be reversibly activated by the addition or removal of estradiol from the growth media. Activation of hrafER was accompanied in C7 3T3 cells by the rapid, protein synthesis-independent activation of both mitogen-activated protein (MAP) kinase kinase and p42/p44 MAP kinase and by phosphorylation of the resident p74raf-1 protein as demonstrated by decreased electrophoretic mobility. The phosphorylation of p74raf-1 had no effect on the kinase activity of the protein, indicating that mobility shift is an unreliable indicator of p74raf-1 enzymatic activity. Removal of estradiol from the growth media led to a rapid inactivation of the MAP kinase cascade. These results demonstrate that Raf-1 can activate the MAP kinase cascade in vivo, independent of other "upstream" signaling components. Parallel experiments performed with rat1a cells conditionally transformed by hrafER demonstrated activation of MAP kinase kinase in response to estradiol but no subsequent activation of p42/p44 MAP kinases or phosphorylation of p74raf-1. This result suggests that in rat1a cells, p42/p44 MAP kinase activation is not required for Raf-1-mediated oncogenic transformation. Estradiol-dependent activation of p42/p44 MAP kinases and phosphorylation of p74raf-1 was, however, observed in rat1a cells expressing hrafER when the cells were pretreated with okadaic acid. This result suggests that the level of protein phosphatase activity may play a crucial role in the regulation of the MAP kinase cascade. Our results provide the first example of a cytosolic signal transducer being harnessed by fusion to the hormone-binding domain of the estrogen receptor. This conditional system not only will aid the elucidation of the function of Raf-1 but also may be more broadly useful for the construction of conditional forms of other kinases and signaling molecules.


1999 ◽  
Vol 13 (1) ◽  
pp. 24-37 ◽  
Author(s):  
Tullio Florio ◽  
Hong Yao ◽  
Kendall D. Carey ◽  
Tara J. Dillon ◽  
Philip J. S. Stork

Abstract Hormones and growth factors regulate cell growth via the mitogen-activated protein (MAP) kinase cascade. Here we examine the actions of the hormone somatostatin on the MAP kinase cascade through one of its two major receptor subtypes, the somatostatin receptor 1 (SSTR1) stably expressed in CHO-K1 cells. Somatostatin antagonizes the proliferative effects of fibroblast growth factor in CHO-SSTR1 cells via the SSTR1 receptor. However, in these cells, somatostatin robustly activates MAP kinase (also called extracellular signal regulated kinase; ERK) and augments fibroblast growth factor-stimulated ERK activity. We show that the activation of ERK via SSTR1 is pertussis toxin sensitive and requires the small G protein Ras, phosphatidylinositol 3-kinase, the serine/threonine kinase Raf-1, and the protein tyrosine phosphatase SHP-2. The activation of ERK by SSTR1 increased the expression of the cyclin-dependent protein kinase inhibitor p21cip1/WAF1. Previous studies have suggested that somatostatin-stimulated protein tyrosine phosphatase activity mediates the growth effects of somatostatin. Our data suggest that SHP-2 stimulation by SSTR1 may mediate some of these effects through the activation of the MAP kinase cascade and the expression of p21cip1/WAF1.


Sign in / Sign up

Export Citation Format

Share Document