Comparing Observations of Cyclical Variability in Hot- and Cool-Star Winds

Author(s):  
D. J. Mullan
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niloufar Nouri ◽  
Naresh Devineni ◽  
Valerie Were ◽  
Reza Khanbilvardi

AbstractThe annual frequency of tornadoes during 1950–2018 across the major tornado-impacted states were examined and modeled using anthropogenic and large-scale climate covariates in a hierarchical Bayesian inference framework. Anthropogenic factors include increases in population density and better detection systems since the mid-1990s. Large-scale climate variables include El Niño Southern Oscillation (ENSO), Southern Oscillation Index (SOI), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), and Atlantic Multi-decadal Oscillation (AMO). The model provides a robust way of estimating the response coefficients by considering pooling of information across groups of states that belong to Tornado Alley, Dixie Alley, and Other States, thereby reducing their uncertainty. The influence of the anthropogenic factors and the large-scale climate variables are modeled in a nested framework to unravel secular trend from cyclical variability. Population density explains the long-term trend in Dixie Alley. The step-increase induced due to the installation of the Doppler Radar systems explains the long-term trend in Tornado Alley. NAO and the interplay between NAO and ENSO explained the interannual to multi-decadal variability in Tornado Alley. PDO and AMO are also contributing to this multi-time scale variability. SOI and AO explain the cyclical variability in Dixie Alley. This improved understanding of the variability and trends in tornadoes should be of immense value to public planners, businesses, and insurance-based risk management agencies.


2015 ◽  
Vol 11 (S320) ◽  
pp. 134-137
Author(s):  
John P. Pye ◽  
Simon R. Rosen

AbstractWe present estimates of cool-star X-ray flare rates determined from the XMM-Tycho survey (Pyeet al. 2015, A&A, 581, A28), and compare them with previously published values for the Sun and for other stellar EUV and white-light samples. We demonstrate the importance of applying appropriate corrections, especially in regard to the total, effective size of the stellar sample. Our results are broadly consistent with rates reported in the literature for Kepler white-light flares from solar-type stars, and with extrapolations of solar flare rates, indicating the potential of stellar X-ray flare observations to address issues such as ‘space weather’ in exoplanetary systems and our own solar system.


Nature ◽  
2017 ◽  
Vol 544 (7650) ◽  
pp. 333-336 ◽  
Author(s):  
Jason A. Dittmann ◽  
Jonathan M. Irwin ◽  
David Charbonneau ◽  
Xavier Bonfils ◽  
Nicola Astudillo-Defru ◽  
...  
Keyword(s):  

1983 ◽  
Vol 102 ◽  
pp. 161-164
Author(s):  
Theodore Simon ◽  
Ann Merchant Boesgaard

The difficulties of measuring magnetic fields in late-type stars other than the sun are well known, as one is reminded by other contributions to these Proceedings. This Symposium nevertheless comes at a very opportune time, as we are now at the point where we can begin to explore the relationship of stellar magnetism to flare activity and quiescent cool star chromospheres, transition regions (TRs), and coronae.


1985 ◽  
Vol 289 ◽  
pp. 709 ◽  
Author(s):  
M. Landini ◽  
B. C. Monsignori Fossi ◽  
F. Paresce ◽  
R. A. Stern

1996 ◽  
Vol 152 ◽  
pp. 105-112 ◽  
Author(s):  
Nancy S. Brickhouse

Extreme ultraviolet spectra of Capella, obtained at various orbital phases over the past two years by the EUVE satellite, show strong emission lines from a continuous distribution of temperatures (~ 105 − 107.3 K). In addition to the strong He II λ303.8, the spectra are dominated by emission lines of highly ionized iron. Strong lines of Fe IX, XV, XVI, and XVIII–XXIV are used to construct emission measure distributions for the individual pointings, which show several striking features, including a minimum near 106 K and a local maximum at 106.8 K. Furthermore, intensities of the highest temperature lines (Te > 107 K) show variations (factors of 2–3) at different orbital phases, while the lower temperature Fe lines show variations of about 30% or less. The low variability of most of the strong low temperature features motivates a detailed analysis of the summed spectrum. With ~ 280 ks of total exposure time, we have measured over 200 emission features with S/N ≥ 3.0 in the summed spectrum. We report here initial results from the analysis of this spectrum. We can now identify lines of Fe VIII and X–XIV, as well as a number of electron density and abundance diagnostic lines.We also report here the first direct measurement of the continuum flux around ~ 100 Å in a cool star atmosphere with EUVE. The continuum flux can be predicted from the emission measure model based on Fe line emission, and demonstrates that the Fe/H abundance ratio is close to the solar photospheric value.


1974 ◽  
Vol 2 (5) ◽  
pp. 230-235
Author(s):  
M. S. Bessell

In the five years since the last invited paper on model stellar atmosphere applications there have been many significant advances made on all fronts. The five aspects which I will cover in this paper are: (1) the results of white dwarf model atmosphere investigations;(2) the results of the inclusion of non LTE phenomena in the atmosphere computations of hot (T > 15,000 K) stars;(3) the probable understanding of the cause of peculiar abundance patterns in the Ap and Bp and Am stars;(4) the advances in theory and observations of cool star atmospheres; and(5) the use of synthetic spectra and colours.


Sign in / Sign up

Export Citation Format

Share Document