A Fractional Order Model of Electrically Coupled Neurons & Studying the Stability of This Model

Author(s):  
M. Hadi Malek ◽  
S. R. Hashemi
Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ruiqing Shi ◽  
Ting Lu ◽  
Cuihong Wang

In this paper, a fractional-order model is constructed to describe the transmission of Hepatitis B Virus (HBV). Firstly, the existence and uniqueness of positive solutions are proved. Secondly, the basic reproduction number and the sufficient conditions for the existence of two equilibriums are obtained. Thirdly, the stability of equilibriums are analyzed. After that, some numerical simulations are performed to verify the theoretical prediction. Finally, a brief discussion is presented.


Author(s):  
SANTOSHI PANIGRAHI ◽  
Sunita Chand ◽  
S Balamuralitharan

We investigate the fractional order love dynamic model with time delay for synergic couples in this manuscript. The quantitative analysis of the model has been done where the asymptotic stability of the equilibrium points of the model have been analyzed. Under the impact of time delay, the Hopf bifurcation analysis of the model has been done. The stability analysis of the model has been studied with the reproduction number less than or greater than 1. By using Laplace transformation, the analysis of the model has been done. The analysis shows that the fractional order model with a time delay can sufficiently improve the components and invigorate the outcomes for either stable or unstable criteria. In this model, all unstable cases are converted to stable cases under neighbourhood points. For all parameters, the reproduction ranges have been described. Finally, to illustrate our derived results numerical simulations have been carried out by using MATLAB. Under the theoretical outcomes from parameter estimation, the love dynamical system is verified.


2021 ◽  
Vol 10 (5) ◽  
pp. 2469-2481
Author(s):  
N.A. Hidayati ◽  
A. Suryanto ◽  
W.M. Kusumawinahyu

The ZIKV model presented in this article is developed by modifying \cite{Bonyah2016}’s model. The classical order is changed into fractional order model. The equilibrium points of the model are determined and the stability conditions of each equilibrium point have been done using Routh-Hurwitz conditions. Numerical simulation is presented to verify the result of stability analysis result. Numerical simulation is also used to shows the effect of the order $\alpha$ to the stability of the model’s equilibrium point.


Author(s):  
Fatmawati ◽  
Endrik Mifta Shaiful ◽  
Mohammad Imam Utoyo

Human Immunodeficiency Virus (HIV) is a virus that attacks or infects cells in the immune system that causes immune decline. Acquired Immunodeficiency Syndrome (AIDS) is the most severe stage of HIV infection. AIDS is the rapidly spreading and becoming epidemic diseases in the world of almost complete influence across the country. A mathematical model approach of HIV/AIDS dynamic is needed to predict the spread of the diseases in the future. In this paper, we presented a fractional-order model of the spread of HIV and AIDS diseases which incorporates two-sex population. The fractional derivative order of the model is in the interval (0,1]. We compute the basic reproduction number and prove the stability of the equilibriums of the model. The sensitivity analysis also is done to determine the important factor controlling the spread. Using the Adams-type predictor-corrector method, we then perform some numerical simulations for variation values of the order of the fractional derivative. Finally, the effects of various antiretroviral therapy (ART) treatments are studied and compared with numerical approach.


2022 ◽  
Vol 7 (4) ◽  
pp. 5463-5479
Author(s):  
Ali Yousef ◽  
◽  
Ashraf Adnan Thirthar ◽  
Abdesslem Larmani Alaoui ◽  
Prabir Panja ◽  
...  

<abstract><p>This paper investigates a fractional-order mathematical model of predator-prey interaction in the ecology considering the fear of the prey, which is generated in addition by competition of two prey species, to the predator that is in cooperation with its species to hunt the preys. At first, we show that the system has non-negative solutions. The existence and uniqueness of the established fractional-order differential equation system were proven using the Lipschitz Criteria. In applying the theory of Routh-Hurwitz Criteria, we determine the stability of the equilibria based on specific conditions. The discretization of the fractional-order system provides us information to show that the system undergoes Neimark-Sacker Bifurcation. In the end, a series of numerical simulations are conducted to verify the theoretical part of the study and authenticate the effect of fear and fractional order on our model's behavior.</p></abstract>


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Muhammad Aslam ◽  
Rashid Murtaza ◽  
Thabet Abdeljawad ◽  
Ghaus ur Rahman ◽  
Aziz Khan ◽  
...  

AbstractIn this article, we study a fractional order HIV/AIDS infection model with ABC-fractional derivative. The model is based on four classes of a population. The study includes the existence and uniqueness of solution, the stability analysis, and simulations. We utilize the fixed point technique for the existence and uniqueness analysis. The stability of the fractional order model is derived with the help of existing literature for the Hyers–Ulam stability. For the numerical computations, the Lagrange interpolation is utilized, and the simulations are obtained for specific parameters. The results are closer to the classical results for different orders.


2021 ◽  
Vol 146 ◽  
pp. 110859
Author(s):  
Ahmed Boudaoui ◽  
Yacine El hadj Moussa ◽  
Zakia Hammouch ◽  
Saif Ullah

Sign in / Sign up

Export Citation Format

Share Document