Relative Pose Estimation of Surgical Tools in Assisted Minimally Invasive Surgery

Author(s):  
Agustin Navarro ◽  
Edgar Villarraga ◽  
Joan Aranda
Author(s):  
Sinan Onal ◽  
Susana Lai-Yuen ◽  
Stuart Hart

Minimally invasive surgery (MIS) or laparoscopic surgery has changed the focus of surgery and has become an alternative to open surgical procedures. Operations are performed through small incisions in the abdomen thus avoiding the need for large incisions. This results in less tissue trauma, less scarring, and faster post-operative recovery time. However, the inherent challenges of laparoscopic procedures include limited visibility, constrained working space and the need for advanced surgical tools to safely and efficiently perform the surgical procedure. It is also necessary for surgeons to obtain advanced surgical training to perform these procedures.


2018 ◽  
Vol 37 (5) ◽  
pp. 1204-1213 ◽  
Author(s):  
M. Allan ◽  
S. Ourselin ◽  
D. J. Hawkes ◽  
J. D. Kelly ◽  
D. Stoyanov

2022 ◽  
Vol 8 ◽  
Author(s):  
Wael Othman ◽  
Zhi-Han A. Lai ◽  
Carlos Abril ◽  
Juan S. Barajas-Gamboa ◽  
Ricard Corcelles ◽  
...  

As opposed to open surgery procedures, minimally invasive surgery (MIS) utilizes small skin incisions to insert a camera and surgical instruments. MIS has numerous advantages such as reduced postoperative pain, shorter hospital stay, faster recovery time, and reduced learning curve for surgical trainees. MIS comprises surgical approaches, including laparoscopic surgery, endoscopic surgery, and robotic-assisted surgery. Despite the advantages that MIS provides to patients and surgeons, it remains limited by the lost sense of touch due to the indirect contact with tissues under operation, especially in robotic-assisted surgery. Surgeons, without haptic feedback, could unintentionally apply excessive forces that may cause tissue damage. Therefore, incorporating tactile sensation into MIS tools has become an interesting research topic. Designing, fabricating, and integrating force sensors onto different locations on the surgical tools are currently under development by several companies and research groups. In this context, electrical force sensing modality, including piezoelectric, resistive, and capacitive sensors, is the most conventionally considered approach to measure the grasping force, manipulation force, torque, and tissue compliance. For instance, piezoelectric sensors exhibit high sensitivity and accuracy, but the drawbacks of thermal sensitivity and the inability to detect static loads constrain their adoption in MIS tools. Optical-based tactile sensing is another conventional approach that facilitates electrically passive force sensing compatible with magnetic resonance imaging. Estimations of applied loadings are calculated from the induced changes in the intensity, wavelength, or phase of light transmitted through optical fibers. Nonetheless, new emerging technologies are also evoking a high potential of contributions to the field of smart surgical tools. The recent development of flexible, highly sensitive tactile microfluidic-based sensors has become an emerging field in tactile sensing, which contributed to wearable electronics and smart-skin applications. Another emerging technology is imaging-based tactile sensing that achieved superior multi-axial force measurements by implementing image sensors with high pixel densities and frame rates to track visual changes on a sensing surface. This article aims to review the literature on MIS tactile sensing technologies in terms of working principles, design requirements, and specifications. Moreover, this work highlights and discusses the promising potential of a few emerging technologies towards establishing low-cost, high-performance MIS force sensing.


2003 ◽  
Vol 773 ◽  
Author(s):  
Keith J. Rebello ◽  
Kyle S. Lebouitz ◽  
Michele Migliuolo

AbstractThe development of sophisticated endoscopic tools and the recent introduction of robotics are expanding the applications of minimally invasive surgery. The lack of tactile feedback in the currently available endoscopic and robotic telemanipulation systems however represents a significant limitation. A need has arisen for the development of surgical instruments having integrated sensors. Current efforts to integrate sensors into or onto surgical tools has focused on fabrication of sensors on silicon, polyimide, or some other substrate and then attaching the sensors to a tool by hand or machine with epoxy, tape, or some other glue layer. Attaching the sensor in this manner has certain deficiencies. In particular, this method of attaching sensors to a surgical tool limits the sensors size, increases its thickness, and further constrains where the sensor can be placed. A method of fabricating tactile sensors on surgical instruments that addresses these deficiencies is discussed.


Author(s):  
Xiaochuan Sun ◽  
Shahram Payandeh

In minimally invasive surgery, the positions of surgical tools are important in multiple instruments set-up and procedures. Typically, each surgery requires 4–5 incision holes and for each specific procedure, the layout of points defines specific pattern. Taking advantage of this possible one-to-one relationship between a specific procedure in minimally invasive surgery and the incision patterns, such patterns can be utilized in tele-monitoring of trainee during an emulated surgical operation. For example, in performance evaluation of trainee, this procedure would automatically estimate and verify the initial incision pattern to that of the predefined expected template associated with a particular surgical procedure. In this paper, we propose and analyze two models, based on color and shape respectively, to reconstruct the pattern. Both approaches use image information only to reconstruct the incision patterns in three dimensional space. The challenge of monocular endoscopic view is the lack of depth perception which hindered the vision-based tracking of laparoscopic tools. To address the problem, we present a method to determine not only the spatial tip position of the surgical tools, but also their orientation with respect to the camera coordinate frame. Detailed formulation shows that how segmented tool edges and camera field of view localize the 3D orientations of tools. Then, 3D position of the tool tip is reconstructed using either color or edge detection method. Finally, the orientations and the position of tool tips uniquely determine the poses of the tools. From above procedures, geometrical models of cylindrical tools can be constructed in each sequence of mono-camera images. To further use the tracking result in order to localize the incision point, we computed the vectors of the cylindrical tool center lines at multiple poses at number of frames. Extracted incision point is further analyzed as a recognition pattern to map into the patients’ pre-operative incision procedure. Accuracy of 3D tool pose estimation and incision pattern is evaluated in real image sequences with known ground truth.


2020 ◽  
Vol 25 (6) ◽  
pp. 2754-2764
Author(s):  
Sajid Nisar ◽  
Asad Hameed ◽  
Nabeel Kamal ◽  
Osman Hasan ◽  
Fumitoshi Matsuno

Sign in / Sign up

Export Citation Format

Share Document