Mems Tactile Sensors for Surgical Instruments

2003 ◽  
Vol 773 ◽  
Author(s):  
Keith J. Rebello ◽  
Kyle S. Lebouitz ◽  
Michele Migliuolo

AbstractThe development of sophisticated endoscopic tools and the recent introduction of robotics are expanding the applications of minimally invasive surgery. The lack of tactile feedback in the currently available endoscopic and robotic telemanipulation systems however represents a significant limitation. A need has arisen for the development of surgical instruments having integrated sensors. Current efforts to integrate sensors into or onto surgical tools has focused on fabrication of sensors on silicon, polyimide, or some other substrate and then attaching the sensors to a tool by hand or machine with epoxy, tape, or some other glue layer. Attaching the sensor in this manner has certain deficiencies. In particular, this method of attaching sensors to a surgical tool limits the sensors size, increases its thickness, and further constrains where the sensor can be placed. A method of fabricating tactile sensors on surgical instruments that addresses these deficiencies is discussed.

2022 ◽  
Vol 8 ◽  
Author(s):  
Wael Othman ◽  
Zhi-Han A. Lai ◽  
Carlos Abril ◽  
Juan S. Barajas-Gamboa ◽  
Ricard Corcelles ◽  
...  

As opposed to open surgery procedures, minimally invasive surgery (MIS) utilizes small skin incisions to insert a camera and surgical instruments. MIS has numerous advantages such as reduced postoperative pain, shorter hospital stay, faster recovery time, and reduced learning curve for surgical trainees. MIS comprises surgical approaches, including laparoscopic surgery, endoscopic surgery, and robotic-assisted surgery. Despite the advantages that MIS provides to patients and surgeons, it remains limited by the lost sense of touch due to the indirect contact with tissues under operation, especially in robotic-assisted surgery. Surgeons, without haptic feedback, could unintentionally apply excessive forces that may cause tissue damage. Therefore, incorporating tactile sensation into MIS tools has become an interesting research topic. Designing, fabricating, and integrating force sensors onto different locations on the surgical tools are currently under development by several companies and research groups. In this context, electrical force sensing modality, including piezoelectric, resistive, and capacitive sensors, is the most conventionally considered approach to measure the grasping force, manipulation force, torque, and tissue compliance. For instance, piezoelectric sensors exhibit high sensitivity and accuracy, but the drawbacks of thermal sensitivity and the inability to detect static loads constrain their adoption in MIS tools. Optical-based tactile sensing is another conventional approach that facilitates electrically passive force sensing compatible with magnetic resonance imaging. Estimations of applied loadings are calculated from the induced changes in the intensity, wavelength, or phase of light transmitted through optical fibers. Nonetheless, new emerging technologies are also evoking a high potential of contributions to the field of smart surgical tools. The recent development of flexible, highly sensitive tactile microfluidic-based sensors has become an emerging field in tactile sensing, which contributed to wearable electronics and smart-skin applications. Another emerging technology is imaging-based tactile sensing that achieved superior multi-axial force measurements by implementing image sensors with high pixel densities and frame rates to track visual changes on a sensing surface. This article aims to review the literature on MIS tactile sensing technologies in terms of working principles, design requirements, and specifications. Moreover, this work highlights and discusses the promising potential of a few emerging technologies towards establishing low-cost, high-performance MIS force sensing.


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Mostafa Daneshgar Rahbar ◽  
Hao Ying ◽  
Abhilash Pandya

Unintentional vascular damage can result from a surgical instrument’s abrupt movements during minimally invasive surgery (laparoscopic or robotic). A novel real-time image processing algorithm based on local entropy is proposed that can detect abrupt movements of surgical instruments and predict bleeding occurrence. The uniform nature of the texture of surgical tools is utilized to segment the tools from the background. By comparing changes in entropy over time, the algorithm determines when the surgical instruments are moved abruptly. We tested the algorithm using 17 videos of minimally invasive surgery, 11 of which had tool-induced bleeding. Our preliminary testing shows that the algorithm is 88% accurate and 90% precise in predicting bleeding. The average advance warning time for the 11 videos is 0.662 s, with the standard deviation being 0.427 s. The proposed approach has the potential to eventually lead to a surgical early warning system or even proactively attenuate tool movement (for robotic surgery) to avoid dangerous surgical outcomes.


2010 ◽  
Vol 19 (5) ◽  
pp. 400-414 ◽  
Author(s):  
Andreas Tobergte

This paper presents MiroSurge, a telepresence system for minimally invasive surgery developed at the German Aerospace Center (DLR), and introduces MiroSurge's new user interaction modalities: (1) haptic feedback with software-based preservation of the fulcrum point, (2) an ultrasound-based approach to the quasi-tactile detection of pulsating vessels, and (3) a contact-free interface between surgeon and telesurgery system, where stereo vision is augmented with force vectors at the tool tip. All interaction modalities aim to increase the user's perception beyond stereo imaging by either augmenting the images or by using haptic interfaces. MiroSurge currently provides surgeons with two different interfaces. The first option, bimanual haptic interaction with force and partial tactile feedback, allows for direct perception of the remote environment. Alternatively, users can choose to control the surgical instruments by optically tracked forceps held in their hands. Force feedback is then provided in augmented stereo images by constantly updated force vectors displayed at the centers of the teleoperated instruments, regardless of the instruments' position within the video image. To determine the centerpoints of the instruments, artificial markers are attached and optically tracked. A new approach to detecting pulsating vessels beneath covering tissue with an omnidirectional ultrasound Doppler sensor is presented. The measurement results are computed and can be provided acoustically (by displaying the typical Doppler sound), optically (by augmenting the endoscopic video stream), or kinesthetically (by a gentle twitching of the haptic input devices). The control structure preserves the fulcrum point in minimally invasive surgery and user commands are followed by the surgical instrument. Haptic feedback allows the user to distinguish between interaction with soft and hard environments. The paper includes technical evaluations of the features presented, as well as an overview of the system integration of MiroSurge.


2012 ◽  
Vol 6 (2) ◽  
Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai

A crucial design challenge in minimally invasive surgical (MIS) robots is the provision of a fully decoupled four degrees-of-freedom (4-DOF) remote center-of-motion (RCM) for surgical instruments. In this paper, we present a new parallel manipulator that can generate a 4-DOF RCM over its end-effector and these four DOFs are fully decoupled, i.e., each of them can be independently controlled by one corresponding actuated joint. First, we revisit the remote center-of-motion for MIS robots and introduce a projective displacement representation for coping with this special kinematics. Next, we present the proposed new parallel manipulator structure and study its geometry and motion decouplebility. Accordingly, we solve the inverse kinematics problem by taking the advantage of motion decouplebility. Then, via the screw system approach, we carry out the Jacobian analysis for the manipulator, by which the singular configurations are identified. Finally, we analyze the reachable and collision-free workspaces of the proposed manipulator and conclude the feasibility of this manipulator for the application in minimally invasive surgery.


2014 ◽  
Vol 5 ◽  
pp. MEI.S13342
Author(s):  
Francesca Destro ◽  
Noemi Cantone ◽  
Mario Lima

Minimally invasive surgery (MIS) is a relatively new surgery comprising various procedures performed with special miniaturized instruments and imaging reproduction systems. Technological advances have made MIS an efficient, safe, and applicable tool for pediatric surgeons with unquestionable advantages. The recent introduction of three-dimensional (3D) high definition systems has been advocated in order to overcome some of the problems related to standard MIS visual limitations. This short paper recapitulates the necessity to minimize MIS visualization limitations and reports the characteristics of new laparoscopic 3D systems.


2019 ◽  
Author(s):  
Jacob A. Greenberg ◽  
Laura E. Fischer

The field of minimally invasive surgery has evolved rapidly since the first laparoscopic appendectomies and cholecystectomies were performed nearly 30 years ago.1 Minimally invasive approaches are now widely used for gastrointestinal resection, hernia repair, antireflux surgery, bariatric surgery, and solid-organ surgery, such as hepatic, pancreatic, adrenal, and renal resections. Although the techniques and equipment needed to access, expose, and dissect vary according to the type of operation and surgeon’s preference, a basic set of equipment is essential for any laparoscopic or robotic procedure: endoscope, camera, light source, signal processing unit, video monitor, insufflator and gas supply, trocars, and surgical instruments. Understanding how to use and troubleshoot this equipment is critical for any surgeon who performs minimally invasive surgery. We review the essentials of basic laparoscopic equipment, including the mechanics of normally functioning equipment and the various types of laparoscopic trocars and instruments. We also discuss robotic equipment and the fundamental differences from laparoscopy. Minilaparoscopy and single-site equipment are briefly explained. Additionally, we discuss potential technical difficulties that surgeons may encounter while performing minimally invasive procedures and provide suggestions for troubleshooting these problems. This review 13 figure, 2 tables, and 64 references.Key Words: Laparoscopy, Robotic Surgery, Minimally Invasive Surgery, Laparoscopic Surgery, Trocars, Surgical Energy Devices, Insufflator, Laparoscopic Instrumentation, Ergonomics, Single Site Surgery


Author(s):  
Wei-Yu Tseng ◽  
Jefferey S. Fisher ◽  
Javier L. Prieto ◽  
Kentaro Rinaldi ◽  
Abraham P. Lee

Tactile sensors are the interfaces to detect the physical properties of objects and have extensive applications in robotic sensing, biomechanics, minimally invasive surgery and human prosthetics [1]. For human prosthetics applications, the current prosthetic hand can offer only the manipulation function. With the sensing being part of the prosthetic hand, the user can get feedback from the prosthetic. This feeling can help users decrease their dependency on visual information and have better body control on weight balancing and signal limb stance.


Sign in / Sign up

Export Citation Format

Share Document