Distributed Production Scheduling Using Federated Agent Architecture

Author(s):  
Jayeola Femi Opadiji ◽  
Toshiya Kaihara
Author(s):  
Paolo Renna

Production networks can be dynamically structured and involving multiple production sites with different objectives. This organizational structure is able to match agility and efficiency to compete in the global market. In this environment is impossible for a single organization to control whole production networks; thus, a decentralized approach has been developed to manage the production networks. However, the coordinate mechanism in decentralized control is more important to obtain a high level of performance. The research proposes innovative coordination strategies for coordinate production networks by Multi Agent Architecture. A link between negotiation strategies and a production planning algorithm has been developed in order to support the coordination strategies proposed. In particular, two protocols to reach an agreement between customer and the production network have been proposed: negotiation and an expected profit approaches. Moreover, two coordination strategies have been proposed: index efficiency and ranking price approaches. Finally, the possibility of divide the orders in lots by the customer is proposed. A simulation environment based on open source code and Multi Agent Architecture has been developed to test the proposed approaches. The experiments have been conducted in different conditions of workload and mar-up; the results of the simulation provide the information necessary to select the suitable coordination and protocol mechanisms in a distributed production planning problem.


Author(s):  
Mohd Nor Akmal Khalid ◽  
Umi Kalsom Yusof

Competitiveness and rapid expansion of flexible manufacturing system (FMS) as one of the industrial alternatives has attracted many practitioners’ and academicians’ interest. Recent globalization events have further encouraged FMS development into distributed, self-reliant units of production center. The flexible manufacturing system in distributed system (FMSDS) considers multi-factory environments, where jobs are processed by a system of FMSs. FMSDS problems deal with the allocation of jobs to factories, independent assignment of job operation to the machines, and operations sequencing on the machine. Additionally, in many previous studies, impact of maintenance as one of the core parts of production scheduling has been neglected. This significantly affects the overall performance of the production scheduling. As such, maintenance has been considered in this paper as part of the production scheduling. The objective of this paper is to minimize the global makespan over all the factories. This paper proposes an Improved Immune Algorithm (IIA) to solve the FMSDS problem. Antibody encoding adoption explicitly represents the information of factory, job, and maintenance, whilst a greedy decoding procedure exploits flexibility and determines the job routing. Rather than s traditional mutation operator, an improvised mutation operator is used to improve the solutions by refining the most promising individuals of each generation. The proposed approach has been compared with other algorithms and obtained satisfactory results, where the algorithm performance has been tested with several parameter tunings.


Sign in / Sign up

Export Citation Format

Share Document